The orientation distribution function (ODF) is expanded in terms of generalized spherical harmonics and bounds on the resulting texture coefficients are derived. A necessary and sufficient condition for satisfaction of the normalization property of the ODF is also provided. These results are of significance in, for example, microstructural optimization of materials and predicting texture coefficients based on wave velocity measurements.

1.
Nadeau
,
J. C.
, and
Ferrari
,
M.
,
2001
, “
On Optimal Zeroth-Order Bounds With Application to Hashin-Shtrikman Bounds and Anisotropy Parameters
,”
Int. J. Solids Struct.
,
38
, pp.
7945
7965
.
2.
Viglin
,
A. S.
,
1961
, “
A Quantitative Measure of the Texture of a Polycrystalline Material-Texture Function
,”
Sov. Phys. Solid State
,
2
(
10
), pp.
2195
2207
.
3.
Morris
,
P. R.
, and
Heckler
,
A. J.
,
1965
, “
Crystallite Orientation Analysis for Rolled Cubic Materials
,”
Adv. X-Ray Anal.
,
11
, pp.
454
472
.
4.
Bunge, H.-J., 1982, Texture Analysis in Materials Science, Butterworths, London.
5.
Johnson
,
G. C.
, and
Wenk
,
H. R.
,
1986
, “
Elastic Properties of Polycrystals With Trigonal Crystal and Orthorhombic Specimen Symmetry
,”
J. Appl. Phys.
,
60
(
11
), pp.
3868
3875
.
6.
Ferrari
,
M.
, and
Johnson
,
G. C.
,
1988
, “
The Equilibrium Properties of a 6 mm Polycrystal Exhibiting Transverse Isotropy
,”
J. Appl. Phys.
,
63
(
9
), pp.
4460
4468
.
7.
Takao
,
Y.
,
Chou
,
T. W.
, and
Taya
,
M.
,
1982
, “
Effective Longitudinal Young’s Modulus of Misoriented Short Fiber Composites
,”
ASME J. Appl. Mech.
,
49
(
3
), pp.
536
540
.
8.
Advani
,
S. G.
, and
Tucker
,
C. L.
,
1987
, “
The Use of Tensors to Describe and Predict Fiber Orientation in Short Fiber Composites
,”
J. Rheol.
,
31
(
8
), pp.
751
784
.
9.
Ferrari
,
M.
, and
Johnson
,
G. C.
,
1989
, “
Effective Elasticities of Short-Fiber Composites With Arbitrary Orientation Distribution
,”
Mech. Mater.
,
8
, pp.
67
73
.
10.
Marzari
,
N.
, and
Ferrari
,
M.
,
1992
, “
Textural and Micromorphological Effects on the Overall Elastic Response of Macroscopically Anisotropic Composites
,”
ASME J. Appl. Mech.
,
59
, pp.
269
275
.
11.
Taylor
,
R.
,
Brandon
,
J. R.
, and
Morrell
,
P.
,
1992
, “
Microstructure, Composition and Property Relationships of Plasma-Sprayed Thermal Barrier Coatings
,”
Surf. Coat. Technol.
,
50
(
2
), pp.
141
149
.
12.
Lee
,
W. Y.
,
Stinton
,
D. P.
,
Berndt
,
C. C.
,
Erdogan
,
F.
,
Lee
,
Y.-D.
, and
Mutasim
,
Z.
,
1996
, “
Concept of Functionally Graded Materials for Advanced Thermal Barrier Coating Applications
,”
J. Am. Ceram. Soc.
,
79
(
12
), pp.
3003
3012
.
13.
Cherradi
,
N.
,
Kawasaki
,
A.
, and
Gasik
,
M.
,
1994
, “
Worldwide Trends in Functionally Gradient Materials Research and Development
,”
Composites Eng.
,
4
(
8
), pp.
883
894
.
14.
Nadeau
,
J. C.
, and
Ferrari
,
M.
,
1999
, “
Microstructural Optimization of a Functionally Graded Transversely Isotropic Layer
,”
Mech. Mater.
,
31
(
10
), pp.
637
652
.
15.
Nadeau
,
J. C.
, and
Meng
,
X. N.
,
2000
, “
On the Response Sensitivity of an Optimally Designed Functionally Graded Layer
,”
Composites, Part B
,
31
, pp.
285
297
.
16.
Kielczynski
,
P. J.
,
Moreau
,
A.
, and
Bussie`re
,
J. F.
,
1994
, “
Determination of Texture Coefficients in Hexagonal Polycrystalline Aggregates With Orthorhombic Symmetry Using Ultrasounds
,”
J. Acoust. Soc. Am.
,
95
(
2
), pp.
813
827
.
17.
Clark
, Jr.,
A. V.
,
Reno
,
R. C.
,
Thompson
,
R. B.
,
Smith
,
J. F.
,
Blessing
,
G. V.
,
Fields
,
R. J.
,
Delsanto
,
P. P.
, and
Mignogna
,
R. B.
,
1988
, “
Texture Monitoring in Aluminum Alloys: A Comparison of Ultrasonic and Neutron Diffraction Measurement
,”
Ultrasonics
,
26
, pp.
189
197
.
18.
Gel’fand, I. M., Minlos, R. A., and Shapiro, Z. Ya., 1993, Representations of the Rotation and Lorentz Groups and Their Applications, MacMillan, New York.
You do not currently have access to this content.