This paper extends a recent approach to the direct numerical simulation of particle flows to the case in which the particles are not fixed. The basic idea is to use a local analytic representation valid near the particle to “transfer” the no-slip condition from the particle surface to the adjacent grid nodes. In this way the geometric complexity arising from the irregular relation between the particle boundary and the underlying mesh is avoided and fast solvers can be used. The results suggest that the computational effort increases only slowly with the number of particles so that the method is efficient for large-scale simulations. The focus here is on the two-dimensional case (cylindrical particles), but the same procedure, to be developed in forthcoming papers, applies to three dimensions (spherical particles).

1.
Elghobashi
,
S.
, and
Truesdell
,
G. C.
,
1993
, “
On the Two-Way Interaction Between Homogeneous Turbulence and Dispersed Solid Particles, I: Turbulence Modification
,”
Phys. Fluids A
,
5
, pp.
1790
1801
.
2.
Stock
,
D. E.
,
1996
, “
Particle Dispersion in Flowing Gases
,”
ASME J. Fluids Eng.
,
118
, pp.
4
17
.
3.
Crowe
,
C. T.
,
Troutt
,
T. R.
, and
Chung
,
J. N.
,
1996
, “
Numerical Models for Two-Phase Turbulent Flows
,”
Annu. Rev. Fluid Mech.
,
28
, pp.
11
41
.
4.
Fortes
,
A.
,
Joseph
,
D. D.
, and
Lundgren
,
T. S.
,
1987
, “
Nonlinear Mechanics of Fluidization of Beds of Spherical Particles
,”
J. Fluid Mech.
,
177
, pp.
467
483
.
5.
Hu
,
H. H.
,
Joseph
,
D. D.
, and
Crochet
,
M. J.
,
1992
, “
Direct Simulation of Fluid-Particle Motions
,”
Theor. Comput. Fluid Dyn.
,
3
, pp.
285
306
.
6.
Feng
,
J.
,
Hu
,
H. H.
, and
Joseph
,
D. D.
,
1994
, “
Direct Simulation of Initial Value Problems for the Motion of Solid Bodies in a Newtonian Fluid, Part 1. Sedimentation
,”
J. Fluid Mech.
,
261
, pp.
95
134
.
7.
Glowinski
,
R.
,
Pan
,
T. W.
,
Hesla
,
T. I.
, and
Joseph
,
D. D.
,
1999
, “
A Distributed Lagrange Multiplier/Fictitious Domain Method for Particulate Flows
,”
Int. J. Multiphase Flow
,
25
, pp.
755
794
.
8.
Patankar
,
N. A.
,
Singh
,
P.
,
Joseph
,
D. D.
,
Glowinski
,
R.
, and
Pan
,
T.-W.
,
2000
, “
A New Formulation of the Distributed Lagrange Multiplier/Fictitious Domain Method for Particulate Flows
,”
Int. J. Multiphase Flow
,
26
, pp.
1509
1524
.
9.
Singh, P., Hesla, T. I., and Joseph, D. D., 2001, “Modified Distributed Lagrangian Multiplier/Fictitious Domain Method for Particulate Flows With Collisions,” preprint.
10.
Pan
,
Y.
, and
Banerjee
,
S.
,
1997
, “
Numerical Investigation of the Effect of Large Particles on Wall Turbulence
,”
Phys. Fluids
,
9
, pp.
3786
3807
.
11.
Takiguchi
,
S.
,
Kajishima
,
T.
, and
Miyake
,
Y.
,
1999
, “
Numerical Scheme to Resolve the Interaction Between Solid Particles and Fluid Turbulence
,”
JSME Int. J.
,
B42
, pp.
411
418
.
12.
Johnson
,
A. A.
, and
Tezduyar
,
T.
,
1996
, “
Simulation of Multiple Spheres Falling in a Liquid-Filled Tube
,”
Comput. Methods Appl. Mech. Eng.
,
134
, pp.
351
373
.
13.
Johnson
,
A. A.
, and
Tezduyar
,
T.
,
1997
, “
3-D Simulation of Fluid-Particle Interactions With the Number of Particles Reaching 100
,”
Comput. Methods Appl. Mech. Eng.
,
145
, pp.
301
321
.
14.
Chattot
,
J. J.
, and
Wang
,
Y.
,
1998
, “
Improved Treatment of Intersecting Bodies With the Chimera Method and Validation With a Simple and Fast Flow Solver
,”
Comput. Fluids
,
27
, pp.
721
740
.
15.
Nirschl
,
H.
,
Dwyer
,
H. A.
, and
Denk
,
V.
,
1995
, “
Three-Dimensional Calculations of the Simple Shear Flow Around a Single Particle Between Two Moving Walls
,”
J. Fluid Mech.
,
283
, pp.
273
285
.
16.
Chen
,
S.
, and
Doolen
,
G. D.
,
1998
, “
Lattice Boltzmann Method in Fluid Flows
,”
Annu. Rev. Fluid Mech.
,
30
, pp.
329
364
.
17.
Aidun
,
C. K.
,
Lu
,
Y.
, and
Ding
,
E.-J.
,
1998
, “
Direct Analysis of Particulate Suspensions With Inertia Using the Discrete Boltzmann Equation
,”
J. Fluid Mech.
,
37
, pp.
287
311
.
18.
Inamuro
,
T.
,
Maeba
,
K.
, and
Ogino
,
F.
,
2000
, “
Flow Between Parallel Walls Containing the Lines of Neutrally Buoyant Circular Cylinders
,”
Int. J. Multiphase Flow
,
26
, pp.
1981
2004
.
19.
Prosperetti
,
A.
, and
Og˜uz
,
H. N.
,
2001
, “
PHYSALIS: A New oN Method for the Numerical Simulation of Disperse Flows of Spheres, Part I: Potential Flow
,”
J. Comput. Phys.
,
167
, pp.
196
216
.
20.
Takagi, S., Og˜uz, H. N., Zhang, Z., and Prosperetti, A., 2002, “PHYSALIS: A New Method Particle Simulation, Part II: Two-Dimensional Navier-Stokes Flow Around Cylinders,” J. Comput. Phys., submitted for publication.
21.
Huang, H., and Takagi, S., 2002, “PHYSALIS: A New Method for Particle Flow Simulation, Part III: Convergence Analysis,” J. Comput. Phys., submitted for publication.
22.
Ory, E., Og˜uz, H. N., and Prosperetti, A., 2000, “PHYSALIS: A New Numerical Method for Particle Simulations,” Proceedings of the ASME FED Summer Meeting, ASME, New York.
23.
Kress, R., 1989, Linear Integral Equations, Springer, Berlin.
24.
Press, W. H., Vetterling, W. T., Teukolsky, S. A., and Flannery, B. P., 1992, Numerical Recipes in FORTRAN, 2nd Ed; Cambridge University Press, Cambridge, UK.
25.
Aidun
,
C. K.
, and
Lu
,
Y.
,
1995
, “
Lattice Boltzmann Simulation of Solid Particles Suspended in a Fluid
,”
J. Stat. Phys.
,
81
, pp.
49
61
.
You do not currently have access to this content.