A numerical method for the prediction of an unsteady fluid flow in a complex geometry that involves moving boundary interfaces is presented in this paper. The method is also applicable to the prediction of the far-field sound that results from an unsteady fluid flow. The flow field is computed by large-eddy simulation (LES), while surface-pressure fluctuations obtained by the LES are used to predict the far-field sound. To deal with a moving boundary interface in the flow field, a form of the finite element method in which overset grids are applied from multiple dynamic frames of reference has been developed. The method is implemented as a parallel program by applying a domain-decomposition programming model. The validity of the proposed method is shown through two numerical examples: prediction of the internal flows of a hydraulic pump stage and prediction of the far-field sound that results from unsteady flow around an insulator mounted on a high-speed train.

1.
Moore
,
J.
,
Moore
,
J. G.
, and
Timmis
,
P. H.
,
1984
, “
Performance Evaluation of Centrifugal Compressor Impellers Using Three-Dimensional Viscous Flow Calculations
,”
ASME J. Eng. Gas Turbines Power
,
106
, pp.
475
481
.
2.
Dawes, W. N., 1988, “Development of a 3D Navier-Stokes Solver for Application to All Types of Turbomachinery,” ASME Paper No. 88-GT-70.
3.
Hah
,
C.
,
Bryans
,
A. C.
,
Moussa
,
Z.
, and
Tomsho
,
M. E.
,
1988
, “
Application of Viscous Flow Computations for the Aerodynamic Performance of a Back-Swept Impeller at Various Operating Conditions
,”
ASME J. Turbomach.
,
110
, pp.
303
311
.
4.
Denton
,
J. D.
,
1992
, “
The Calculation of Three-Dimensional Viscous Flow Through Multistage Turbomachinery
,”
ASME J. Turbomach.
,
114
, pp.
18
26
.
5.
Goto
,
A.
,
1992
, “
Study of Internal Flows in a Mixed-Flow Pump Impeller at Various Tip Clearances Using Three-Dimensional Viscous Flow Computations
,”
ASME J. Turbomach.
,
114
, pp.
373
382
.
6.
Takemura
,
T.
, and
Goto
,
A.
,
1996
, “
Experimental and Numerical Study of Three-Dimensional Flows in a Mixed-Flow Pump Stage
,”
ASME J. Turbomach.
,
118
, pp.
552
561
.
7.
Kaupert
,
K. A.
,
Holbein
,
P.
, and
Staubli
,
T.
,
1996
, “
A First Analysis of Flow Field Hysteresis in a Pump Impeller
,”
ASME J. Fluids Eng.
,
118
, pp.
685
691
.
8.
Shi
,
F.
, and
Tsukamoto
,
H.
,
2001
, “
Numerical Study of Pressure Fluctuations Caused by Impeller-Diffuser Interaction in a Diffuser Pump Stage
,”
ASME J. Fluids Eng.
,
123
, pp.
466
474
.
9.
He
,
L.
, and
Sato
,
K.
,
2001
, “
Numerical Solution of Incompressible Unsteady Flows in Turbomachinery
,”
ASME J. Fluids Eng.
,
123
, pp.
680
685
.
10.
Deardorff
,
J.
,
1970
, “
A Numerical Study of Three-Dimensional Turbulent Channel Flow at Large Reynolds Number
,”
J. Fluid Mech.
,
41
, pp.
453
480
.
11.
Germano
,
M.
,
Piomelli
,
U.
,
Moin
,
P.
, and
Cabot
,
W. H.
,
1991
, “
A Dynamic Sub-Grid-Scale Eddy Viscosity Model
,”
Phys. Fluids
,
3
(
7
), pp.
1760
1765
.
12.
Lilly
,
D. K.
,
1992
, “
A Proposed Modification of the Germano Sub-Grid-Scale Closure Method
,”
Phys. Fluids
,
4
(
3
), pp.
633
635
.
13.
Jordan
,
S. A.
,
2001
, “
Dynamic Sibgrid-Scale Modeling for Large-Eddy Simulations in Complex Topologies
,”
ASME J. Fluids Eng.
,
123
, pp.
619
623
.
14.
Hughes
,
T. J. R.
,
Oberai
,
A. A.
, and
Mazzei
,
L.
,
2001
, “
Large Eddy Simulation of Turbulent Channel Flows by the Variational Multiscale Method
,”
Phys. Fluids
,
13
, pp.
1884
1799
.
15.
Lund
,
T.
,
1998
, “
Generation of Turbulent Inflow Data for Spatially-Developing Boundary Layer Simulations
,”
J. Comput. Phys.
,
140
, p.
233
233
.
16.
Smirnov
,
A.
,
Shi
,
S.
, and
Celik
,
I.
,
2001
, “
Random Flow Generation Technique for Large Eddy Simulations and Particle-Dynamics Modeling
,”
ASME J. Fluids Eng.
,
123
, pp.
359
371
.
17.
Piomelli
,
U.
,
1999
, “
Large-Eddy Simulation: Achievements and Challenges
,”
Prog. Aeronaut. Sci.
,
35
, p.
335
335
.
18.
Kato, C., Shimizu, H., and Okamura, T., 1999, “Large Eddy Simulation of Unsteady Flow in a Mixed-flow Pump,” Proceedings of 3rd ASME/JSME Joint Fluids Engineering Conference, FEDSM99-7802.
19.
Kato, C., et al., 2000, “Numerical Simulation of Aerodynamic Sound Source in the Wake of a Complex Object,” AIAA Paper 2000-1942.
20.
Tam
,
C. K. W.
,
1995
, “
Computational Aeroacoustics: Issues and Methods
,”
AIAA J.
,
33
(
10
), pp.
1788
1796
.
21.
Wells
,
V. L.
, and
Renaut
,
R. A.
,
1997
, “
Computing Aerodynamically Generated Noise
,”
Annu. Rev. Fluid Mech.
,
29
, pp.
161
199
.
22.
Hardin
,
J. C.
, and
Lamkin
,
S. L.
,
1984
, “
Aeroacoustics Computation of Cylinder Wake Flow
,”
AIAA J.
,
22
(
1
), pp.
51
57
.
23.
Howe
,
M. S.
,
1975
, “
The Generation of Sound by Aerodynamic Sources in an Inhomogeneous Steady Flow
,”
J. Fluid Mech.
,
67
(
3
), pp.
597
610
.
24.
Akishita, S., et al., 1987, “Numerical Simulation of Aerodynamic Sound Radiation from a Two-Dimensional Wing,” AIAA Paper No. 87-2672.
25.
Haruna, S., et al., 1992, “Numerical Study of Aerodynamic Noise Radiated From a Three-Dimensional Wing,” SAE Paper No. 920341.
26.
Adachi, S., et al., 1992, “Computation of Aerodynamic Sound Radiation from Flows past a Wing,” DGLR/AIAA Paper No. 92-02-157.
27.
Kato, C., and Ikegawa, M., 1991, “Large Eddy Simulation of Unsteady Turbulent Wake of a Circular Cylinder Using the Finite Element Method,” Advances in Numerical Simulation of Turbulent Flows, ASME, New York, ASME FED- Vol. 117, pp. 49–56.
28.
Kato, C., Iida, A., Takano, Y., Fujita, H., and Ikegawa, M., 1993, “Numerical Prediction of Aerodynamic Noise Radiated From Low Mach Number Turbulent Wake,” AIAA Paper No. 93-0145.
29.
Curle
,
N.
,
1955
, “
The Influence of Solid Boundaries Upon Aerodynamic Sound
,”
Proc. R. Soc. London, Ser. A
,
A231
, pp.
505
514
.
30.
Lighthill
,
M. J.
,
1951
, “
On Sound Generated Aerodynamically: Part I. General Theory
,”
Proc. R. Soc. London, Ser. A
,
A211
, pp.
564
587
.
31.
Siegert, R., Schwarz, V., and Reichenberger, J., 1999, “Numerical Simulation of Aeroacoustic Sound Generated by Generic Bodies Placed on a Plate: Part II—Prediction of Radicated Sound Pressure,” AIAA Paper No. 99-1985.
32.
Smagorinsky
,
J.
,
1963
, “
General Circulation Experiments with Primitive Equations
,”
Mon. Weather Rev.
,
91
(
3
), pp.
99
164
.
33.
Tezduyar
,
T. E.
,
2001
, “
Finite Element Methods for Flow Problems With Moving Boundaries and Interfaces
,”
Arch. Comput. Methods Eng.
,
8
(
2
), pp.
83
130
.
34.
Ikegawa
,
M.
,
Kaiho
,
M.
, and
Kato
,
C.
,
1994
, “
FEM/FDM Composite Scheme for Viscous Incompressible Flow Analysis
,”
Comput. Methods Appl. Mech. Eng.
,
112
, pp.
149
163
.
35.
Kaiho
,
M.
,
Ikegawa
,
M.
, and
Kato
,
C.
,
1997
, “
Parallel Overlapping Scheme for Viscous Incompressible Flows
,”
Int. J. Numer. Methods Fluids
,
24
, pp.
1341
1352
.
36.
Brooks
,
A. N.
, and
Hughes
,
T. G. R.
,
1982
, “
Streamline Upwind/Petrov-Galerkin Formulations for Convection Dominated Flows With Particular Emphasis on the Incompressible Navier-Stokes Equations
,”
Comput. Methods Appl. Mech. Eng.
,
32
, pp.
199
259
.
37.
Tezduyar, T. E., and Hughes, T. J. R., 1983, “Finite Element Formulations for Convection Dominated Flows With Particular Emphasis on the Compressible Euler Equations,” Proceedings of AIAA 21st Aerospace Sciences Meeting, AIAA Paper No. 83-0125.
38.
Donea
,
J.
et al.
,
1984
, “
Time Accurate Solution of the Advection-Diffusion Problems by Finite Elements
,”
Comput. Methods Appl. Mech. Eng.
,
45
, pp.
123
145
.
39.
Viecelli
,
J. A.
,
1971
, “
A Computing Method for Incompressible Flows Bounded by Walls
,”
J. Comput. Phys.
,
8
, pp.
119
143
.
40.
Simon
,
H.
,
1991
, “
Partitioning of Unstructured Problems for Parallel Processing
,”
Comput. Syst. Eng.
,
2
, pp.
135
148
.
41.
Farhat
,
C.
, and
Lesoinne
,
M.
,
1993
, “
Automatic Partitioning of Unstructured Meshes for the Parallel Solution of Problems in Computer Mechanics
,”
Int. J. Numer. Methods Eng.
,
36
, pp.
745
764
.
42.
Powell
,
A.
,
1964
, “
The Theory of Vortex Sound
,”
J. Acoust. Soc. Am.
,
33
, pp.
177
195
.
You do not currently have access to this content.