An extended finite element method with arbitrary interior discontinuous gradients is applied to two-phase immiscible flow problems. The discontinuity in the derivative of the velocity field is introduced by an enrichment with an extended basis whose gradient is discontinuous across the interface. Therefore, the finite element approximation can capture the discontinuities at the interface without requiring the mesh to conform to the interface, eliminating the need for remeshing. The equations for incompressible flow are solved by a fractional step method where the advection terms are stabilized by a characteristic Galerkin method. The phase interfaces are tracked by level set functions which are discretized by the same finite element mesh and are updated via a stabilized conservation law. The method is demonstrated in several examples.

1.
Huerta
,
A.
, and
Liu
,
W. K.
,
1988
, “
Viscous Flow With Large Free-Surface Motion
,”
Comput. Methods Appl. Mech. Eng.
,
69
(
3
), pp.
277
324
,
2.
Tezduyar
,
T. E.
,
Behr
,
M.
, and
Liou
,
J.
,
1992
, “
A New Strategy for Finite Element Flow Computations Involving Moving Boundaries and Interfaces—The Deforming-Spatial-Domain/Space-Time Procedures: I. The Concept and Preliminary Tests
,”
Comput. Methods Appl. Mech. Eng.
,
94
(
3
), pp.
339
353
.
3.
Tezduyar
,
T. E.
,
Behr
,
M.
,
Mittal
,
S.
, and
Liou
,
J.
,
1992
, “
A New Strategy for Finite Element Flow Computations Involving Moving Boundaries and Interfaces—The Deforming-Spatial-Domain/Space-Time Procedures: II. Computation of Free-Surface Flows, Two-Liquid Flows and Flows With Drifting Cylinders
,”
Comput. Methods Appl. Mech. Eng.
,
94
(
3
), pp.
359
371
.
4.
Noh, W., and Woodward, P., 1976, “A Simple Line Interface Calculation,” Proceedings, Fifth International Conference on Fluid Dynamics, A. I. van de Vooran and P. J. Zandberger eds., Springer-Verlag, New York.
5.
Hirt
,
C. W.
, and
Nichols
,
B. D.
,
1981
, “
Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries
,”
J. Comput. Phys.
,
39
(
1
), pp.
201
225
.
6.
Osher
,
S.
, and
Sethian
,
J. A.
,
1988
, “
Propagation of Fronts With Curvature Based Speed: Algorithms Based on Hamilton-Jacobi Formulations
,”
J. Comput. Phys.
,
79
, p.
12
12
.
7.
Sethian, J. A., 1999, Level Set Methods and Fast Marching Methods, Cambridge University Press, Cambridge, UK.
8.
Harlow
,
J. H.
, and
Welch
,
J. E.
,
1996
, “
Numerical Study of Large Amplitude Free Surface Motion
,”
Phys. Fluids
,
9
, pp.
842
851
.
9.
Belytschko
,
T.
, and
Black
,
T.
,
1999
, “
Elastic Crack Growth in Finite Elements With Minimal Remeshing
,”
Int. J. Numer. Methods Eng.
,
45
(
5
), pp.
601
620
.
10.
Moe¨s
,
N.
,
Dolbow
,
J.
, and
Belytschko
,
T.
,
1999
, “
A Finite Element Method for Crack Growth Without Remeshing
,”
Int. J. Numer. Methods Eng.
,
46
, pp.
131
150
.
11.
Belytschko
,
T.
,
Moe¨s
,
N.
,
Usui
,
S.
, and
Parimi
,
C.
,
2001
, “
Arbitrary Discontinuities in Finite Element
,”
Int. J. Numer. Methods Eng.
,
50
(
4
), pp.
993
1013
.
12.
Krongauz, Y., and Belytschko, T., 1997, “EFG Approximation With Discontinuous Derivatives,” Int. J. Numer. Methods Eng., accepted for publication.
13.
Sukumar, N., Chopp, D. L., Moe¨s, N., and Belytschko, T., 2000, “Modeling Holes and Inclusions by Level Sets in the Extended Finite Element Method,” Comput. Methods Appl. Mech. Eng., submitted for publication.
14.
Wagner
,
G. J.
,
Moe¨s
,
N.
,
Liu
,
W. K.
, and
Belytschko
,
T.
,
2001
, “
The Extended Finite Element Method for Rigid Particles in Stokes Flow
,”
Int. J. Numer. Methods Eng.
,
51
(
3
), pp.
293
313
.
15.
Chessa, J., Smolinski, P., and Belytschko, T., 2002, “The Extended Finite Element Method for Stefan Problems,” Int. J. Numer. Methods Eng., accepted for publication.
16.
Dolbow, J., and Merle, R., 2001, “Modeling Dendritic Solidification With the Extended Finite Element Method,” Proceedings of the First MIT Conference on Computational Fluid and Solid Mechanics, K. J. Bathe, ed., Boston, Elsevier, New York, pp. 1135–1138.
17.
Renaud, M., and Dolbow, J., 2003, “Solving Thermal and Phase Change Problems With the Extended Finite Element Method,” Computational Mechanics., accepted for publication.
18.
Dhatt
,
G.
,
Gao
,
D. M.
, and
Cheikh
,
A. B.
,
1990
, “
A Finite Element Simulation of Metal Flow in Moulds
,”
Int. J. Numer. Methods Eng.
,
30
, pp.
821
831
.
19.
Usmani
,
A. S.
,
Cross
,
J. T.
, and
Lewis
,
R. W.
,
1992
, “
A Finite Element Model for the Simulations of Mould Filling in Metal Casting and Associated Heat Transfer
,”
Int. J. Numer. Methods Eng.
,
35
, pp.
787
806
.
20.
Peng
,
D.
,
Merriman
,
B.
,
Osher
,
S.
,
Zhao
,
H.
, and
Kang
,
M.
,
1999
, “
A PDE-Based Fast Local Level Set Method
,”
J. Comput. Phys.
,
155
, pp.
410
438
.
21.
Barth
,
T.
, and
Sethian
,
J. A.
,
1998
, “
Numerical Schemes for the Hamilton-Jacobi and Level Set Equations on Triangulated Domains
,”
J. Comput. Phys.
,
145
, pp.
1
40
.
22.
Rao
,
V. S.
,
Hughes
,
T. J. R.
, and
Garikipati
,
K.
,
2000
, “
On Modeling Thermal Oxidation of Silicon II: Numerical Aspects
,”
Int. J. Numer. Methods Eng.
,
47
, pp.
359
377
.
23.
Quecedo
,
M.
, and
Pastor
,
M.
,
2001
, “
Application of the Level Set Method to the Finite Element Solution of Two-Phase Flows
,”
Int. J. Numer. Methods Eng.
,
50
, pp.
645
663
.
24.
Sussman
,
M.
,
Almgren
,
A.
,
Bell
,
J. B.
,
Colella
,
P.
,
Howell
,
L. H.
, and
Welcome
,
M. L.
,
1999
, “
An Adaptive Level Set Approach for Incompressible Two-Phase Flows
,”
Comput. Phys.
,
148
, pp.
81
124
.
25.
Sussman
,
M.
, and
Fatemi
,
E.
,
1999
, “
An Efficient Interface Preserving Level Set Re-distancing Algorithm and Its Applications to Interfacial Incompressible Fluid Flow
,”
J. Sci. Comput.
,
20
(
4
), pp.
1165
1191
.
26.
Sussman
,
M.
,
Fatemi
,
E.
,
Smereka
,
P.
, and
Osher
,
S.
1997
, “
An Improved Level Set method for Incompressible Two-Phase Flows
,”
Comput. Fluids
,
27
(
5
), pp.
663
680
.
27.
Sussman
,
M.
,
Smereka
,
P.
, and
Osher
,
S.
,
1994
, “
A Level Set Approach for Computing Solutions to Incompressible Two-Phase Flows
,”
J. Comput. Phys.
,
114
, pp.
146
159
.
28.
Caide
,
R.
,
Fedkiw
,
R. P.
, and
Anderson
,
C.
,
2001
, “
A Numerical Method for Two-Phase Flow Consisting of Separate Compressible and Incompressible Regions
,”
J. Comput. Phys.
,
166
(
1
), pp.
1
27
.
29.
Merriman, T. B., Fedkiw, R. P., Aslam, P., and Osher, S., 2003, “A Non-Oscillatory Eulerian Approach to Interfaces in Multi-Material Flows,” J. Comput. Phys., to appear.
30.
Belytschko, T., Liu, W. K., and Moran, B., 2000, Nonlinear Finite Elements for Continua and Structures, John Wiley and Sons, New York.
31.
Melenk
,
J. M.
, and
Babusˇka
,
I.
,
1996
, “
The Partition of Unity Method: Basic Theory and Applications
,”
Comput. Methods Appl. Mech. Eng.
,
139
, pp.
289
314
.
32.
Zienkiewicz, O. C., and Taylor, R. L., 2000, The Finite Element Method, Volume 3: Fluid dynamics, Butterworth and Hienemann, Stoneham, MA.
33.
Hansbo
,
P.
,
1993
, “
Explicit Streamline Diffusion Finite Element Methods for the Compressible Euler Equations in Conservation Variables
,”
J. Comput. Phys.
,
109
, pp.
274
288
.
34.
Rider
,
W. J.
, and
Kothe
,
D. B.
,
1998
, “
Reconstructing Volume Tracking
,”
J. Comput. Phys.
,
141
, pp.
112
152
.
35.
Rider, W. J., and Kothe, D. B., 1995, “Streaching and Tearing Interface Tracking Methods,” AIAA Paper 95-1717 (LANL Report LA-UR-95-1145).
36.
Sethian
,
J. A.
, and
Adalstienson
,
D.
,
1999
, “
The Fast Construction of Extension Velocities in Level Set Methods
,”
J. Comput. Phys.
,
148
, pp.
2
22
.
37.
Chorin
,
A. J.
,
1968
, “
Numerical Solution of the Navier-Stokes Equation
,”
Math. Comput.
,
23
, pp.
745
762
.
38.
Zienkiewicz
,
O. C.
, and
Codina
,
R.
,
1995
, “
A General Algorithm for Compressible and Incompressible Flow, Part I. The Split Characteristic Based Scheme
,”
Int. J. Numer. Methods Fluids
,
20
, pp.
869
885
.
39.
Hadamard
,
J. S.
,
1911
,
C. R. Acad. Sci.
,
152
, p.
1735
1735
.
You do not currently have access to this content.