The scattering of normally incident elastic waves by an embedded elliptic crack in an infinite isotropic elastic medium has been solved using an analytical numerical method. The representation integral expressing the scattered displacement field has been reduced to an integral equation for the unknown crack-opening displacement. This integral equation has been further reduced to an infinite system of Fredholm integral equation of the second kind and the Fourier displacement potentials are expanded in terms of Jacobi’s orthogonal polynomials. Finally, proper use of orthogonality property of Jacobi’s polynomials produces an infinite system of algebraic equations connecting the expansion coefficients to the prescribed dynamic loading. The matrix elements contains singular integrals which are reduced to regular integrals through contour integration. The first term of the first equation of the system yields the low-frequency asymptotic expression for scattering cross section analytically which agrees completely with previous results. In the intermediate and high-frequency scattering regime the system has been truncated properly and solved numerically. Results of quantities of physical interest, such as the dynamic stress intensity factor, crack-opening displacement scattering cross section, and back-scattered displacement amplitude have been given and compared with earlier results.
Scattering From an Elliptic Crack by an Integral Equation Method: Normal Loading
Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED MECHANICS. Manuscript received by the ASME Applied Mechanics Division, November 22, 2000; final revision, October 22, 2001. Associate Editor: A. K. Mal. Discussion on the paper should be addressed to the Editor, Professor Robert M. McMeeking, Department of Mechanical and Environmental Engineering University of California–Santa Barbara, Santa Barbara, CA 93106-5070, and will be accepted until four months after final publication of the paper itself in the ASME JOURNAL OF APPLIED MECHANICS.
Saha, T. K., and Roy, A. (October 31, 2002). "Scattering From an Elliptic Crack by an Integral Equation Method: Normal Loading ." ASME. J. Appl. Mech. November 2002; 69(6): 775–784. https://doi.org/10.1115/1.1483834
Download citation file: