We consider the problem of determining the elastic field in an infinite elastic solid induced by an ellipsoidal inclusion with a distribution of eigenstrains. The particular type of distribution considered in the article is characterized by a polynomial in the Cartesian coordinates of the points of the inclusion. Eshelby showed that in such a situation the induced strain field within the inclusion is also characterized by a polynomial of the same order. However, the explicit expression for this polynomial seems to have not yet been reported in the literature. The present study fills this gap.
Issue Section:
Technical Papers
Keywords:
inclusions,
polynomials,
eigenvalues and eigenfunctions,
internal stresses,
elasticity,
stress analysis
Topics:
Polynomials
1.
Eshelby
, J. D.
, 1957
, “The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems
,” Proc. R. Soc. London, Ser. A
, A241
, pp. 376
–396
.2.
Eshelby
, J. D.
, 1959
, “The Elastic Field Outside an Ellipsoidal Inclusion
,” Proc. R. Soc. London, Ser. A
, A252
, pp. 561
–569
.3.
Eshelby, J. D., 1960, “Elastic Inclusions and Inhomogeneities,” Progress in Solid Mechanics, 2, I. N. Sneddon and R. Hill, eds., North-Holland, Amsterdam, pp. 89–140.
4.
Walpole
, L. J.
, 1967
, “The Elastic Field of an Inclusion in an Anisotropic Medium
,” Proc. R. Soc. London, Ser. A
, 300
, pp. 270
–289
.5.
Kinoshita
, N.
, and Mura
, T.
, 1971
, “Elastic Fields of Inclusions in Anisotropic Media
,” Phys. Status Solidi A
, 5
, pp. 759
–768
.6.
Kinoshita
, N.
, and Mura
, T.
, 1986
, “An Ellipsoidal Inclusion With Polynomial Eigenstrains
,” Q. Appl. Math.
, XLIV
(1
), pp. 195
–199
.7.
Asaro
, R. J.
, and Barnett
, D. M.
, 1975
, “The Non-uniform Transformation Strain Problem for an Anisotropic Ellipsoidal Inclusion
,” J. Mech. Phys. Solids
, 23
, pp. 77
–83
.8.
Mura
, T.
, and Kinoshita
, N.
, 1978
, “The Polynomial Eigenstrain Problem for an Anisotropic Ellipsoidal Inclusion
,” Phys. Status Solidi A
, 48
, pp. 447
–450
.9.
Mura, T., 1987, Micromechanics of Defects in Solids, Martinus Nijhoff, The Hague.
10.
Mura
, T.
, 1988
, “Inclusion Problems
,” Appl. Mech. Rev.
, 41
(1
), pp. 15
–20
.11.
Nemat-Nasser, S., and Hori, M., 1999, Micromechanics: Overall Properties of Heterogeneous Materials, Elsevier, Amsterdam.
12.
Khachaturyan, A. G., 1983, Theory of Structural Transformations in Solids, John Wiley and Sons, New York.
13.
Markenscoff
, X.
, 1998
, “On the Shape of the Eshelby Inclusions
,” J. Elast.
, 44
, pp. 163
–166
.14.
Markenscoff
, X.
, 1998
, “Inclusions With Constant Eigenstress
,” J. Mech. Phys. Solids
, 46
, pp. 2297
–2301
.15.
Markenscoff
, X.
, 1998
, “Inclusions of Uniform Eigenstrains and Constant or Other Stress Dependence
,” ASME J. Appl. Mech.
, 65
, pp. 863
–866
.16.
Lubarda
, V. A.
, and Markenscoff
, X.
, 1998
, “On the Absence of Eshelby Property for Non-ellipsoidal Inclusions
,” Int. J. Solids Struct.
, 35
, No. 25
, pp. 3405
–3411
.17.
Ferrers
, N. M.
, 1877
, “On the Potentials of Ellipsoids, Ellipsoidal Shells, Elliptic Laminae and Elliptic Rings of Variable Densities
,” Q. J. Pure Appl. Math.
, 14
(1
), pp. 1
–22
.18.
Dyson
, F. D.
, 1891
, “The Potentials of Ellipsoids of Variable Densities
,” Q. J. Pure Appl. Math.
, XXV
, pp. 259
–288
.19.
Rahman
, M.
, 2001
, “On the Newtonian Potentials of Heterogeneous Ellipsoids and Elliptic Discs
,” Proc. R. Soc. London, Ser. A
, A457
(2013
), pp. 2227
–2250
.20.
Natanson, I. P., 1967, Theory of Functions of a Real Variable, Frederick Ungar, New York.
21.
Mikata
, Y.
, and Nemat-Nasser
, S.
, 1990
, “Elastic Field due to a Dynamically Transforming Spherical Inclusion
,” ASME J. Appl. Mech.
, 57
, pp. 845
–849
.22.
Mikata
, Y.
, and Nemat-Nasser
, S.
, 1991
, “Interaction of a Harmonic Wave With a Dynamically Transforming Inhomogeneity
,” J. Appl. Phys.
, 70
, pp. 2071
–2078
.23.
Cheng
, Z.-Q.
, and Batra
, R. C.
, 1999
, “Exact Eshelby Tensor for a Dynamic Circular Cylindrical Inclusion
,” ASME J. Appl. Mech.
, 66
, pp. 563
–565
.24.
Van Dyke
, M.
, 1974
, “Analysis and Improvement of Perturbation Series
,” Q. J. Mech. Appl. Math.
, XXVII, Pt. 4
, pp. 423
–450
.25.
Bell, R. J. T., 1959, An Elementary Treatise on Coordinate Geometry of Three Dimensions, Macmillan, London.
Copyright © 2002
by ASME
You do not currently have access to this content.