The homogenization procedure of Ponte Castan˜eda is used to estimate the effective behavior of active composite materials consisting of aligned shape memory alloy (SMA) fibers embedded in a linear elastic matrix. Results are presented for thermal activation of the SMA with various applied tractions on the composite. While increasing stiffness of the matrix phase inhibits the contraction of the SMA, the simulations indicate that the use of a prestress in the manufacturing of the composite may provide an increase in the response time of the system without reducing performance.
Issue Section:
Technical Papers
1.
Willis, J. R., 1981, “Variational and Related Methods for the Overall Properties of Composites,” Advances in Applied Mechanics, C. Y. Yih, ed., Academic Press, San Diego, CA, pp. 1–78.
2.
Willis
, J. R.
, 1983
, “The Overall Elastic Response of Composite-Materials
,” ASME J. Appl. Mech.
, 50
, pp. 1202
–1209
.3.
Christenesen, R. M., 1979, Mechanics of Composite Materials, John Wiley and Sons, New York.
4.
Talbot
, D. R. S.
, and Willis
, J. R.
, 1985
, “Variational Principles for Nonlinear Inhomogeneous Media
,” IMA J. Appl. Math.
, 35
, pp. 39
–54
.5.
Ponte Castan˜eda
, P.
, 1991
, “The Effective Mechanical Properties of Nonlinear Isotropic Composites
,” J. Mech. Phys. Solids
, 39
(1
), pp. 45
–71
.6.
Ponte Castan˜eda
, P.
, 1996
, “Exact Second-Order Estimates for the Effective Mechanical Properties of Nonlinear Composite Materials
,” J. Mech. Phys. Solids
, 44
, pp. 827
–862
.7.
Abeyaratne
, R.
, and Knowles
, J. K.
, 1993
, “A Continuum Model for Thermoelastic Solid Capable of Undergoing Phase Transitions
,” J. Mech. Phys. Solids
, 41
, pp. 541
–571
.8.
Tanaka
, K.
, 1886
, “A Thermomechanical Sketch of Shape Memory Effect: One Dimensional Tensile Behavior
,” Res. Mech.
, 18
, pp. 251
–263
.9.
Tanaka
, K.
, Kobayashi
, S.
, and Sato
, Y.
, 1986
, “Thermomechanics of Transformation Pseudoelasticity and Shape Memory Effect in Alloys
,” Int. J. Plast.
, 2
, 59
–72
.10.
Liang
, C.
, and Rogers
, C. A.
, 1990
, “One-Dimensional Thermomechanical Constitutive Relations of Shape Memory Materials
,” J. Intell. Mater. Syst. Struct.
, 1
, pp. 207
–234
.11.
Leblond
, J. B.
, Devaux
, J. D.
, and Devaux
, J. C.
, 1989
, “Mathematical Modeling of Transformation Plasticity in Steels, I: Case of Ideal-Plastic Phases
,” Int. J. Plast.
, 5
, pp. 551
–572
.12.
Ivshin
, Y.
, and Pence
, T. J.
, 1994
, “A Constitutive Model for Hysteretic Phase Transition Behavior
,” Int. J. Eng. Sci.
, 32
(4
), pp. 681
–704
.13.
Falk
, F.
, 1980
, “Model Free Energy, Mechanics, and Thermodynamics of Shape Memory Alloys
,” Acta Metall. Mater.
, 28
, pp. 1773
–1780
.14.
Falk
, F.
, 1983
, “Ginzburg-Landau Theory of Static Domain Walls in Shape-Memory Alloys
,” Z. Phys. B: Condens. Matter
, 51
, pp. 177
–185
.15.
Brinson
, L. C.
, and Huang
, M. S.
, 1996
, “Simplifications and Comparisons of Shape Memory Alloy Constitutive Models
,” J. Intell. Mater. Syst. Struct.
, 7
, pp. 108
–104
.16.
Boyd
, J. G.
, and Lagoudas
, D. C.
, 1995
, “A Thermodynamic Constitutive Model for Shape Memory Materials, Part I. The Monolithic Shape Memory Alloys
,” Int. J. Plast.
, 12
, pp. 805
–841
.17.
Bekker
, A.
, and Brinson
, L. C.
, 1997
, “Temperature-Induced Phase Transformation in a Shape Memory Alloy: Phase Diagram Based Kinetics Approach
,” J. Mech. Phys. Solids
, 45
(6
), pp. 949
–988
.18.
Muller
, I.
, and Xu
, H.
, 1991
, “On the Pseudo-Elastic Hysteresis
,” Acta Metall. Mater.
, 39
(3
), pp. 263
–271
.19.
Boyd
, J. G.
, and Lagoudas
, D. C.
, 1994
, “Thermomechanical Response of Shape Memory Composites
,” J. Intell. Mater. Syst. Struct.
, 4
, pp. 333
–346
.20.
Bo
, Z.
, Lagoudas
, D. C.
, and Miller
, D.
, 1999
, “Material Characterization of SMA Actuators Under Nonproportional Thermomechanical Loading
,” ASME J. Eng. Mater. Technol.
, 121
, pp. 75
–85
.21.
Bo
, Z.
, and Lagoudas
, D. C.
, 1999
, “Thermomechanical Modeling of Polycrystalline SMAs Under Cyclic Loading, Part I: Theoretical Derivations
,” Int. J. Eng. Sci.
, 37
, July.22.
Lagoudas
, D. C.
, Boyd
, J. G.
, and Bo
, Z.
, 1994
, “Micromechanics of Active Composites With SMA Fibers
,” ASME J. Eng. Mater. Technol.
, 116
, pp. 337
–347
.23.
Brinson
, L. C.
et al., 1997
, “Analysis of Controlled Beam Using SMA Wires
,” J. Intell. Mater. Syst. Struct.
, 8
(1
), pp. 12
–25
.24.
de Blonk
, B. J.
, and Lagoudas
, D. C.
, 1997
, “Actuation of Elastomeric Rods With Embedded Two-Way Shape Memory Alloy Actuators
,” Smart Mater. Struct.
, 6
, pp. 265
–277
.25.
Bernardini
, D.
, 2001
, “On the Macroscopic Free Energy Functions for Shape Memory Alloys
,” J. Mech. Phys. Solids
, pp. 813
–837
.26.
Briggs
, J.
, and Ostrowski
, J.
, 2002
, “Experimental Feedforward and Feedback Control of a 1-D SMA Composite
,” Smart Mater. Struct.
11
(1
), pp. 9
–23
.27.
Bondaryev
, E. N.
, and Wayman
, C. M.
, 1998
, “Some Stress-Strain-Temperature Relationships for Shape Memory Alloys
,” Metall. Trans. A
, 19A
, pp. 2407
–2413
.28.
Ivshin
, Y.
, and Pence
, T. J.
, 1994
, “A Thermomechanical Model for a One Variant Shape Memory Material
,” J. Intell. Mater. Syst. Struct.
, 5
, pp. 455
–473
.29.
Lagoudas
, D. C.
, Bo
, Z.
, and Qidwai
, M. A.
, 1996
, “A Unified Thermodynamic Constitutive Model for SMA and Finite Element Analysis of Active Matrix Composites
,” Mech. Compos. Mat. Struct.
, 3
, pp. 153
–179
.30.
Ponte Castan˜eda
, P.
, and Suquet
, P.
, 1998
, “Nonlinear Composites
,” Adv. Appl. Mech.
, 34
, pp. 171
–302
.31.
Levin
, V. M.
, 1968
, “On the Coefficients of Thermal Expansion of Heterogeneous Materials
,” Mekh. Tver. Tela
, p. 88
88
.32.
Walpole
, L. J.
, 1966
, “On the Bounds for the Overall Elastic Moduli of Inhomogeneous Systems—I
,” J. Mech. Phys. Solids
, 14
, pp. 151
–262
.33.
Walpole
, L. J.
, 1966
, “On the Bounds for the Overall Elastic Moduli of Inhomogeneous Systems—II
,” J. Mech. Phys. Solids
, 14
, pp. 289
–301
.34.
Walpole
, L. J.
, 1969
, “On the Overall Elastic Moduli of Composite Materials
,” J. Mech. Phys. Solids
, 17
, pp. 235
–251
.35.
Marquardt
, D. W.
, 1963
, J. Soc. Ind. Appl. Math.
, 11
, pp. 431
–441
.Copyright © 2002
by ASME
You do not currently have access to this content.