Continuum thermomechanics hinges on the concept of a representative volume element (RVE), which is well defined in two situations only: (i) unit cell in a periodic microstructure, and (ii) statistically representative volume containing a very large (mathematically infinite) set of microscale elements (e.g., grains). Response of finite domains of material, however, displays statistical scatter and is dependent on the scale and boundary conditions. In order to accomplish stochastic homogenization of material response, scale-dependent hierarchies of bounds are extended to dissipative/irreversible phenomena within the framework of thermomechanics with internal variables. In particular, the free-energy function and the dissipation function become stochastic functionals whose scatter tends to decrease to zero as the material volume is increased. These functionals are linked to their duals via Legendre transforms either in the spaces of ensemble average velocities or ensemble-average dissipative forces. In the limit of infinite volumes (RVE limit (ii) above) all the functionals become deterministic, and classical Legendre transforms of deterministic thermomechanics hold. As an application, stochastic continuum damage mechanics of elastic-brittle solids is developed.

1.
Maugin, G. A., 1999, The Thermomechanics of Nonlinear Irreversible Behaviors—An Introduction, World Scientific, Singapura.
2.
Ziegler, H., 1963, “Some Extremum Principles in Irreversible Thermodynamics With Applications to Continuum Mechanics,” Progress in Solid Mechanics, Vol. 42, North-Holland, Amsterdam, pp. 91–191.
3.
Muschik
,
W.
, and
Fang
,
J.
,
1989
, “
Statistical Foundations of Non-equilibrium Contact Quantities. Bridging Phenomenological and Statistical Non-equilibrium Thermodynamics
,”
Acta Phys. Hung.
,
66
, pp.
39
57
.
4.
Lemaitre, J., and Chaboche, J.-L., 1990, Mechanics of Solid Materials, Cambridge University Press, Cambridge, UK.
5.
Maugin, G. A., 1992, The Thermomechanics of Plasticity and Fracture, Cambridge University Press, Cambridge, UK.
6.
Mei
,
C. C.
,
Auriault
,
J.-L.
, and
Ng
,
C.-O.
,
1996
, “
Some Applications of the Homogenization Theory
,”
Adv. Appl. Mech.
,
32
, pp.
277
348
.
7.
Dvorak
,
G. J.
,
1997
, “
Thermomechanics of Heterogeneous Media
,”
J. Therm. Stresses
,
20
, pp.
799
817
.
8.
Drugan
,
W. J.
, and
Willis
,
J. R.
,
1996
, “
A Micromechanics-Based Nonlocal Constitutive Equation and Estimates of Representative Volume Element Size for Elastic Composites
,”
J. Mech. Phys. Solids
,
44
, pp.
497
524
.
9.
Gusev
,
A. A.
,
1997
, “
Representative Volume Element Size for Elastic Composites: A Numerical Study
,”
J. Mech. Phys. Solids
,
45
, No.
9
, pp.
1449
1459
.
10.
Jiang
,
M.
,
Ostoja-Starzewski
,
M.
, and
Jasiuk
,
I.
,
2001
, “
Scale-Dependent Bounds on Effective Elastoplastic Response of Random Composites
,”
J. Mech. Phys. Solids
,
49
, No.
3
, pp.
655
673
.
11.
Bazˇant, Z. P., and Planas, J., 1998, Fracture and Size Effect in Concrete and Other Quasibrittle Materials, CRC Press, Boca Raton, FL.
12.
Chudnovsky, A., 1977, The Principles of Statistical Theory of the Long Time Strength, Novosibirsk (in Russian).
13.
Krajcinovic, D., 1996, Damage Mechanics, North-Holland, Amsterdam.
14.
Krajcinovic, D., 1997, “Essential Structure of the Damage Mechanics Theories,” Theor. Appl. Mech., T. Tatsumi, E. Watanabe, and T. Kambe, eds., Elsevier Science, Amsterdam, pp. 411–426.
15.
Hill
,
R.
,
1963
, “
Elastic Properties of Reinforced Solids: Some Theoretical Principles
,”
J. Mech. Phys. Solids
,
11
, pp.
357
372
.
16.
Hazanov
,
S.
, and
Huet
,
C.
,
1994
, “
Order Relationships for Boundary Conditions Effect in Heterogeneous Bodies Smaller Than the Representative Volume
,”
J. Mech. Phys. Solids
,
41
, pp.
1995
2011
.
17.
Ziegler, H., 1983, An Introduction to Thermomechanics, North-Holland, Amsterdam.
18.
Ziegler, H., and Wehrli, C., 1987, “The Derivation of Constitutive Relations From Free Energy and the Dissipation Functions,” Adv. Appl. Mech., 25, Academic Press, New York, pp. 183–238.
19.
Germain
,
P.
,
Nguyen
,
Quoc Son
, and
Suquet
,
P.
,
1983
, “
Continuum Thermodynamics
,”
ASME J. Appl. Mech.
,
50
, pp.
1010
1020
.
20.
Beran, M. J., 1974, “Application of Statistical Theories for the Determination of Thermal, Electrical, and Magnetic Properties of Heterogeneous Materials,” Mechanics of Composite Materials, Vol. 2, G. P. Sendeckyj, ed., Academic Press, San Diego, CA, pp. 209–249.
21.
Nemat-Nasser, S., and Hori, M., 1993, Micromechanics: Overall Properties of Heterogeneous Materials, North-Holland, Amsterdam.
22.
Jeulin, D., and Ostoja-Starzewski, M., eds., 2001, Mechanics of Random and Multiscale Microstructures (CISM Courses and Lectures), Springer-Verlag, New York, in press.
23.
Stoyan, D., Kendall, W. S., and Mecke, J., 1987, Stochastic Geometry and its Applications, J. Wiley and Sons, New York.
24.
Dempsey
,
J. P.
,
2000
, “
Research Trends in Ice Mechanics
,”
Int. J. Solids Struct.
,
37
,
1
2
.
25.
Rytov, S. M., Kravtsov, Yu. A., and Tatarskii, V. I., 1989, Principles of Statistical Radiophysics, Vol. 3, Springer-Verlag, Berlin.
26.
Huet
,
C.
,
1990
, “
Application of Variational Concepts to Size Effects in Elastic Heterogeneous Bodies
,”
J. Mech. Phys. Solids
,
38
, pp.
813
841
.
27.
Sab
,
K.
,
1992
, “
On the Homogenization and the Simulation of Random Materials
,”
Eur. J. Mech. A/Solids
,
11
, pp.
585
607
.
28.
Ostoja-Starzewski
,
M.
,
1994
, “
Micromechanics as a Basis of Continuum Random Fields
,”
Appl. Mech. Rev.
,
47
, (No. 1, Part 2), pp.
S221–S230
S221–S230
.
29.
Ostoja-Starzewski
,
M.
,
1998
, “
Random Field Models of Heterogeneous Materials
,”
Int. J. Solids Struct.
,
35
, No.
19
, pp.
2429
2455
.
30.
Ostoja-Starzewski
,
M.
,
1999
, “
Scale Effects in Materials With Random Distributions of Needles and Cracks
,”
Mech. Mater.
,
31
, No.
12
, pp.
883
893
.
31.
Ostoja-Starzewski
,
M.
,
1999
, “
Microstructural Disorder, Mesoscale Finite Elements, and Macroscopic Response
,”
Proc. R. Soc. London, Ser. A
,
A455
, pp.
3189
3199
.
32.
Hazanov
,
S.
,
1998
, “
Hill Condition and Overall Properties of Composites
,”
Arch. Appl. Mech.
,
66
, pp.
385
394
.
33.
Hazanov
,
S.
,
1999
, “
On Apparent Properties of Nonlinear Heterogeneous Bodies Smaller Than the Representative Volume
,”
Acta Mech.
,
134
, pp.
123
134
.
34.
Huet
,
C.
,
1999
, “
Coupled Size and Boundary-Condition Effects in Viscoelastic Heterogeneous Composite Bodies
,”
Mech. Mater.
,
31
, No.
12
, pp.
787
829
.
35.
Hazanov
,
S.
, and
Amieur
,
M.
,
1995
, “
On Overall Properties of Elastic Heterogeneous Bodies Smaller Than the Representative Volume
,”
Int. J. Eng. Sci.
,
33
, No.
9
, pp.
1289
1301
.
36.
Ostoja-Starzewski
,
M.
,
1990
, “
A Generalization of Thermodynamic Orthogonality to Random Media
,”
J. Appl. Math. Phys.
,
41
, pp.
701
712
.
37.
Ziegler, H., 1968, “A Possible Generalization of Onsager’s Theory,” IUTAM Symp. Irreversible Aspects of Continuum Mechanics, H. Parkus and L. I. Sedov, eds., Springer-Verlag, New York, pp. 411–424.
38.
Ashby, M. F., and Jones, D. R. H., 1986, Engineering Materials, Vol. 2, Pergamon Press, Oxford.
39.
Ostoja-Starzewski
,
M.
,
Sheng
,
P. Y.
, and
Jasiuk
,
I.
,
1997
, “
Damage Patterns and Constitutive Response of Random Matrix-Inclusion Composites
,”
Eng. Fract. Mech.
,
58
, Nos.
5 and 6
, pp.
581
606
.
40.
Alzebdeh
,
K.
,
Al-Ostaz
,
A.
,
Jasiuk
,
I.
, and
Ostoja-Starzewski
,
M.
,
1998
, “
Fracture of Random Matrix-Inclusion Composites: Scale Effects and Statistics
,”
Int. J. Solids Struct.
,
35
, No.
19
, pp.
2537
2566
.
41.
Hermann, H. J., and Roux, S., eds., 1990, Statistical Models for Fracture of Disordered Media, Elsevier, Amsterdam.
42.
Ostoja-Starzewski
,
M.
,
Jasiuk
,
I.
,
Wang
,
W.
, and
Alzebdeh
,
K.
1996
, “
Composites With Functionally Graded Interfaces: Meso-continuum Concept and Effective Properties
,”
Acta Mater.
,
44
, No.
5
, pp.
2057
2066
.
43.
Zbib
,
H.
, and
Aifantis
,
E. C.
,
1989
, “
A Gradient Dependent Flow Theory of Plasticity: Application to Metal and Soil Instabilities
,”
Appl. Mech. Rev.
, (Mechanics Pan-America 1989, C. R. Steele, A. W. Leissa, and M. R. M. Crespo da Silva, eds.),
42
, No. 11, Part 2, pp.
S295–S304
S295–S304
.
44.
Lacy
,
T. E.
,
McDowell
,
D. L.
, and
Talreja
,
R.
,
1999
, “
Gradient Concepts for Evolution of Damage
,”
Mech. Mater.
,
31
, No.
12
, pp.
831
860
.
45.
Ostoja-Starzewski
,
M.
, and
Tre¸bicki
,
J.
,
1999
, “
On the Growth and Decay of Acceleration Waves in Random Media
,”
Proc. R. Soc. London, Ser. A
,
A455
, pp.
2577
2614
.
You do not currently have access to this content.