The governing differential equations and the boundary conditions for the coupled bending-bending-extensional vibration of a rotating nonuniform beam with arbitrary pretwist and an elastically restrained root are derived by Hamilton’s principle. The semianalytical solution procedure for an inextensional beam without taking account of the coriolis forces is derived. The coupled governing differential equations are transformed to be a vector characteristic governing equation. The frequency equation of the system is derived and expressed in terms of the transition matrix of the vector governing equation. A simple and efficient algorithm for determining the transition matrix of the general system with arbitrary pretwist is derived. The divergence in the Frobenius method does not exist in the proposed method. The frequency relations between different systems are revealed. The mechanism of instability is discovered. The influence of the rotatory inertia, the coupling effect of the rotating speed and the mass moment of inertia, the setting angle, the rotating speed and the spring constants on the natural frequencies, and the phenomenon of divergence instability are investigated.

1.
Leissa
,
A.
,
1981
, “
Vibrational Aspects of Rotating Turbomachinery Blades
,”
Appl. Mech. Rev.
,
34
, pp.
629
635
.
2.
Ramamurti
,
V.
, and
Balasubramanian
,
P.
,
1984
, “
Analysis of Turbomachine Blades: A Review
,”
Shock Vib. Dig.
,
16
, pp.
13
28
.
3.
Rosen
,
A.
,
1991
, “
Structural and Dynamic Behavior of Pretwisted Rods and Beams
,”
Appl. Mech. Rev.
,
44
, pp.
483
515
.
4.
Lin
,
S. M.
,
1999
, “
Dynamic Analysis of Rotating Nonuniform Timoshenko Beams With an Elastically Restrained Root
,”
ASME J. Appl. Mech.
,
66
, pp.
742
749
.
5.
Lee
,
S. Y.
, and
Kuo
,
Y. H.
,
1992
, “
Bending Vibrations of a Rotating Nonuniform Beams With an Elastically Restrained Root
,”
ASME J. Appl. Mech.
,
154
, pp.
441
451
.
6.
Lee
,
S. Y.
, and
Lin
,
S. M.
,
1994
, “
Bending Vibrations of Rotating Nonuniform Timoshenko Beams With an Elastically Restrained Root
,”
ASME J. Appl. Mech.
,
61
, pp.
949
955
.
7.
Gupta
,
R. S.
, and
Rao
,
J. S.
,
1978
, “
Finite Element Eigenvalue Analysis of Tapered and Twisted Timoshenko Beams
,”
J. Sound Vib.
,
56
, No.
2
, pp.
187
200
.
8.
Carnegie
,
W.
, and
Thomas
,
J.
,
1972
, “
The Coupled Bending-Bending Vibration of Pre-twisted Tapered Blading
,”
ASME J. Eng. Ind.
,
94
, pp.
255
266
.
9.
Subrahmanyam
,
K. B.
, and
Rao
,
J. S.
,
1982
, “
Coupled Bending-Bending Cantilever Beams Treated by the Reissner Method
,”
J. Sound Vib.
,
82
, No.
4
, pp.
577
592
.
10.
Celep
,
Z.
, and
Turhan
,
D.
,
1986
, “
On the Influence of Pretwisting on the Vibration of Beams Including the Shear and Rotatory Inertia Effects
,”
J. Sound Vib.
,
110
, No.
3
, pp.
523
528
.
11.
Rosard
,
D. D.
, and
Lester
,
P. A.
,
1953
, “
Natural Frequencies of Twisted Cantilever Beams
,”
ASME J. Appl. Mech.
,
20
, pp.
241
244
.
12.
Lin
,
S. M.
,
1997
, “
Vibrations of Elastically Restrained Nonuniform Beams With Arbitrary Pretwist
,”
AIAA J.
,
35
, No.
11
, pp.
1681
1687
.
13.
Rao
,
J. S.
, and
Carnegie
,
W.
,
1973
, “
A Numerical Procedure for the Determination of the Frequencies and Mode Shapes of Lateral Vibration of Blades Allowing for the Effect of Pre-twist and Rotation
,”
International Journal of Mechanical Engineering Education
1
, No.
1
, pp.
37
47
.
14.
Subrahmanyam
,
K. B.
, and
Kaza
,
K. R. V.
,
1986
, “
Vibration and Buckling of Rotating, Pretwisted, Preconed Beams Including Coriolis Effects
,”
ASME J. Vib., Acoust., Stress, Reliab. Des.
108
, pp.
140
149
.
15.
Subrahmanyam
,
K. B.
,
Kulkarni
,
S. V.
, and
Rao
,
J. S.
,
1982
, “
Application of the Reissner Method to Derive the Coupled Bending-Torsion Equations of Dynamic Motion of Rotating Pretwisted Cantilever Blading With Allowance for Shear Deflection, Rotary Inertia, Warping and Thermal Effects
,”
J. Sound Vib.
,
84
, No.
2
, pp.
223
240
.
16.
Sisto
,
F.
, and
Chang
,
A. T.
,
1984
, “
A Finite Element for Vibration Analysis of Twisted Blades Based on Beam Theory
,”
AIAA J.
21
, No.
11
, pp.
1646
1651
.
17.
Young
,
T. H.
, and
Lin
,
T. M.
,
1998
, “
Stability of Rotating Pretwisted, Tapered Beams With Randomly Varying Speed
,”
ASME J. Vibr. Acoust.
,
120
, pp.
784
790
.
18.
Kar
,
R. C.
, and
Neogy
,
S.
,
1989
, “
Stability of a Rotating, Pretwisted, Non-uniform Cantilever Beam With Tip Mass and Thermal Gradient Subjected to a Non-conservative Force
,”
Comput. Struct.
,
33
, No.
2
, pp.
499
507
.
19.
Hernried
,
A. G.
,
1991
, “
Forced Vibration Response of a Twisted Non-uniform Rotating Blade
,”
Comput. Struct.
,
41
, No.
2
, pp.
207
212
.
20.
Surace
,
G.
,
Anghel
,
V.
, and
Mares
,
C.
,
1997
, “
Coupled Bending-Bending-Torsion Vibration Analysis of Rotating Pretwisted Blades: An Integral Formulation and Numerical Examples
,”
J. Sound Vib.
,
206
, No.
4
, pp.
473
486
.
21.
Rugh, W. J., 1996, Linear System Theory, Prentice-Hall, Englewood Cliffs, NJ, pp. 41–44.
22.
Rao
,
J. S.
,
1987
, “
Turbomachine Blade Vibration
,”
Shock Vib. Dig.
,
19
, No.
5
, pp.
3
10
.
You do not currently have access to this content.