Shakedown analysis, and its more classical special case of limit analysis, basically consists of “direct” (as distinct from time-stepping) methods apt to assess safety factors for variable repeated external actions and procedures which provide upper bounds on history-dependent quantities. The issues reviewed and briefly discussed herein are: some recent engineering-oriented and cost-effective methods resting on Koiter’s kinematic theorem and applied to periodic heterogeneous media; recent extensions (after the earlier ones to dynamics and creep) to another area characterized by time derivatives, namely poroplasticity of fluid-saturated porous media. Links with some classical or more consolidated direct methods are pointed out.

1.
Koiter, W. T., 1960, “General Theorems for Elastic-Plastic Solids,” Progress in Solid Mechanics, Vol. 1, J. N. Sneddon and R. Hill, eds., North-Holland, Amsterdam, pp. 165–221.
2.
Ko¨nig, J. A., 1987, Shakedown of Elastic-Plastic Structures, Elsevier, Amsterdam.
3.
Kamenjarzh, J. A., 1996, Limit Analysis of Solids and Structures, CRC Press, Boca Baton, FL.
4.
Lloyd Smith, D., ed., 1990, Mathematical Programming Methods in Structural Plasticity, Springer-Verlag, New York.
5.
Mro´z, Z., Weichert, D., and Dorosz, S., eds., 1995, Inelastic Behavior of Structures Under Variable Loads, Kluwer, Dordrecht, The Netherlands.
6.
Weichert, D., and Maier, G. eds., 2000, Inelastic Analysis of Structures Under Variable Repeated Loads, Kluwer, Dordrecht, The Netherlands.
7.
Maier
,
G.
,
Carvelli
,
V.
, and
Cocchetti
,
G.
,
2000
, “
On Direct Methods for Shakedown and Limit Analysis
,”
Eur. J. Mech. A/Solids
(Special Issue),
19
, pp.
S79–S100
S79–S100
.
8.
Koiter
,
W. T.
,
1956
, “
A New General Theorem on Shakedown of Elastic-Plastic Structures
,”
Proc. K. Ned. Akad. Wet.
,
B59
, pp.
24
34
.
9.
Karadeniz
,
S.
, and
Ponter
,
A. R. S.
,
1984
, “
A Linear Programming Upper Bound Approach to the Shakedown Limit of Thin Shells Subjected to Variable Thermal Loading
,”
J. Strain Anal.
,
19
, pp.
221
230
.
10.
Yan
,
A.
, and
Nguyen-Dang
,
H.
,
2001
, “
Kinematical Shakedown Analysis With Temperature-Dependent Yield Stress
,”
Int. J. Numer. Methods Eng.
,
50
, pp.
1145
1168
.
11.
Polizzotto
,
C.
,
1984
, “
Deformation Bounds for Elastic Plastic Solids Within and Out of the Creep Range
,”
Nucl. Eng. Des.
,
83
, pp.
293
301
.
12.
Ponter
,
A. R. S.
,
1972
, “
Deformation, Displacement and Work Bounds for Structures in a State of Creep and Subject to Variable Loading
,”
ASME J. Appl. Mech.
,
39
, pp.
953
959
.
13.
Carvelli
,
V.
,
Cen
,
Z.
,
Liu
,
Y.
, and
Maier
,
G.
,
1999
, “
Shakedown Analysis of Defective Pressure Vessels by a Kinematic Approach
,”
Arch. Appl. Mech.
,
69
, pp.
751
764
.
14.
Carvelli
,
V.
,
Maier
,
G.
, and
Taliercio
,
A.
,
1999
, “
Shakedown Analysis of Periodic Heterogeneous Materials by a Kinematic Approach
,”
Mech. Eng. (Strojnı´cky Cˇasopis)
,
50
, No.
4
, pp.
229
240
.
15.
Carvelli
,
V.
,
Maier
,
G.
, and
Taliercio
,
A.
,
2000
, “
Kinematic Limit Analysis of Periodic Heterogeneous Media
,”
Comp. Meth. Eng. Sci.
,
1
, pp.
15
26
.
16.
Casciaro
,
R.
, and
Cascini
,
L.
,
1982
, “
A Mixed Formulation and Mixed Finite Elements for Limit Analysis
,”
Int. J. Numer. Methods Eng.
,
18
, pp.
211
243
.
17.
Ko¨nig
,
J. A.
, and
Kleiber
,
M.
,
1978
, “
On a New Method of Shakedown Analysis
,”
Bull. Acad. Pol. Sci., Ser. Sci. Tech.
,
26
, pp.
165
171
.
18.
Zhang
,
Y. G.
,
1995
, “
An Iterative Algorithm for Kinematic Shakedown Analysis
,”
Comput. Methods Appl. Mech. Eng.
,
127
, pp.
217
226
.
19.
Kamenjarzh
,
J. A.
, and
Merzljakov
,
A.
,
1994
, “
On Kinematic Method in Shakedown Theory; I. Duality of Extremum Problems; II. Modified Kinetic Method
,”
Int. J. Plast.
,
10
, pp.
363
392
.
20.
Kamenjarzh
,
J. A.
, and
Weichert
,
D.
,
1992
, “
On Kinematic Upper Bounds for the Safety Factor in Shakedown Theory
,”
Int. J. Plast.
,
8
, pp.
827
837
.
21.
Sloan
,
S. W.
, and
Kleeman
,
P. W.
,
1995
, “
Upper Bound Limit Analysis Using Discontinuous Velocity Fields
,”
Comput. Methods Appl. Mech. Eng.
,
127
, pp.
293
314
.
22.
Teixeira de Freitas
,
J. A.
,
1991
, “
A Kinematic Model for Plastic Limit Analysis of Solids by the Boundary Element Method
,”
Comput. Methods Appl. Mech. Eng.
,
88
, pp.
189
205
.
23.
Dvorak
,
G. J.
,
Lagoudas
,
D. C.
,
Huang
,
C. M.
,
1994
, “
Fatigue Damage and Shakedown in Metal Matrix Composite Laminates
,”
Mech. Compos. Mat. Struct.
,
1
, pp.
171
202
.
24.
Francescato
,
P.
, and
Pastor
,
J.
,
1997
, “
Lower and Upper Numerical Bounds to the Off-Axis Strength of Unidirectional Fiber-Reinforced Composites by Limit Analysis Methods
,”
Eur. J. Mech. A/Solids
,
16
, pp.
213
234
.
25.
Weichert
,
D.
,
Hachemi
,
A.
, and
Schwabe
,
F.
,
1999
, “
Shakedown Analysis of Composites
,”
Mech. Res. Commun.
,
26
, pp.
309
318
.
26.
Liu
,
Y. H.
,
Cen
,
Z. Z.
, and
Xu
,
B. Y.
,
1995
, “
A Numerical Method for Plastic Limit Analysis of 3-D Structures
,”
Int. J. Solids Struct.
,
32
, pp.
1645
1658
.
27.
Weichert
,
D.
,
Hachemi
,
A.
, and
Schwabe
,
F.
,
1999
, “
Application of Shakedown Analysis to the Plastic Design of Composites
,”
Arch. Appl. Mech.
,
69
, pp.
623
633
.
28.
Hamilton
,
R.
,
Boyle
,
J. T.
,
Shi
,
J.
, and
Mackenzie
,
D.
,
1996
, “
A Simple Upper-Bound Method for Calculating Approximate Shakedown Loads
,”
ASME J. Pressure Vessel Technol.
,
120
, pp.
195
199
.
29.
Ponter
,
A. R. S.
, and
Carter
,
K. F.
,
1997
, “
Shakedown State Simulation Techniques Based on Linear Elastic Solutions
,”
Comput. Methods Appl. Mech. Eng.
,
140
, pp.
259
279
.
30.
Drucker, D. C., 1963, “On the Macroscopic Theory of Inelastic Stress-Strain-Time-Temperature Behavior,” Advances in Materials Research in the NATO Nations (AGAR Dograph 62), Pergamon Press, New York, pp. 193–221.
31.
Dang Van, K., and Papadopoulos, I. V., 1999, High-Cycle Metal Fatigue From Theory to Applications, CISM, Springer-Verlag, New York.
32.
Ponter
,
A. R. S.
, and
Leckie
,
F. A.
,
1998
, “
Bounding Properties of Metal-Matrix Composites Subjected to Cyclic Loading
,”
J. Mech. Phys. Solids
,
46
, pp.
697
717
.
33.
Silberschmidt
,
V. V.
,
Rammerstorfer
,
F. G.
,
Werner
,
E. A.
,
Fischer
,
F. D.
, and
Uggowitzer
,
P. J.
,
1999
, “
On Material Immanent Ratchetting of Two-Phase Materials Under Cyclic Purely Thermal Loading
,”
Arch. Appl. Mech.
,
69
, pp.
727
750
.
34.
Lewis R. W., and Schrefler B. A., 1998, The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media, John Wiley and Sons, Chichester.
35.
Cocchetti
,
G.
, and
Maier
,
G.
,
1998
, “
Static Shakedown Theorems in Piecewise Linearized Poroplasticity
,”
Arch. Appl. Mech.
,
68
, pp.
651
661
.
36.
Cocchetti
,
G.
, and
Maier
,
G.
,
2000
, “
Shakedown Analysis in Poroplasticity by Linear Programming
,”
Int. J. Numer. Methods Eng.
,
47
, No.
1–3
, pp.
141
168
.
37.
Cocchetti, G., and Maier, G., 2000, “Upper Bounds on Post-Shakedown Quantities in Poroplasticity,” Inelastic Analysis of Structures Under Variable Repeated Loads, D. Weichert and G. Maier, eds., Kluwer, Dordrecht, The Netherlands, pp. 289–314.
38.
Maier
,
G.
,
1969
, “
Shakedown Theory in Perfect Elastoplasticity With Associated and Nonassociated Flow-Laws: A Finite Element, Linear Programming Approach
,”
Meccanica
,
4
, pp.
250
260
.
39.
Maier
,
G.
,
1970
, “
A Matrix Structural Theory of Piecewise-Linear Plasticity With Interacting Yield Planes
,”
Meccanica
,
5
, pp.
55
66
.
40.
Tin-Loi
,
F.
,
1990
, “
A Yield Surface Linearization Procedure in Limit Analysis
,”
Mech. Struct. Mach.
,
18
, pp.
135
149
.
41.
Comi
,
C.
, and
Corigliano
,
A.
,
1991
, “
Dynamic Shakedown in Elastoplastic Structures With General Internal Variable Constitutive Laws
,”
Int. J. Plast.
,
7
, pp.
679
692
.
42.
Corigliano
,
A.
,
Maier
,
G.
, and
Pycko
,
S.
,
1995
, “
Dynamic Shakedown Analysis and Bounds for Elastoplastic Structures With Nonassociative, Internal Variable Constitutive Laws
,”
Int. J. Solids Struct.
,
32
, pp.
3145
3166
.
43.
Du
,
S. T.
,
Xu
,
B. Y.
, and
Dong
,
Y. F.
,
1993
, “
Dynamic Shakedown Theory of Elastoplastic Work-Hardening Structures Allowing for Second-Order Geometric Effects
,”
Acta Mech. Solidica Sinica
,
6
, pp.
15
26
.
44.
Polizzotto, C., 1984, “On Shakedown of Structures Under Dynamic Agencies,” Inelastic Analysis Under Variable Loads, A. Sawczuk and C. Polizzotto, eds., Cogras, Palermo, pp. 5–29.
45.
Polizzotto
,
C.
,
Borino
,
G.
,
Caddemi
,
S.
, and
Fuschi
,
P.
,
1993
, “
Theorems of Restricted Dynamic Shakedown
,”
Int. J. Mech. Sci.
,
35
, pp.
787
801
.
46.
Ceradini
,
G.
,
1969
, “
Sull’adattamento dei corpi elastoplastici soggetti ad azioni dinamiche
,”
Gior. Genio Civile
,
415
, pp.
239
258
.
47.
Corradi
,
L.
, and
Maier
,
G.
,
1973
, “
Inadaptation Theorems in the Dynamics of Elastic-Work Hardening Structures
,”
Ing. Arch.
,
43
, pp.
44
57
.
48.
Corradi
,
L.
, and
Maier
,
G.
,
1974
, “
Dynamic Non-Shakedown Theorem for Elastic Perfectly-Plastic Continua
,”
J. Mech. Phys. Solids
,
22
, pp.
401
413
.
49.
Corigliano
,
A.
,
Maier
,
G.
, and
Pycko
,
S.
,
1995
, “
Kinematic Criteria of Dynamic Shakedown Extended to Nonassociative Constitutive Laws With Saturation Hardening
,”
Rend. Acc. Naz. Lincei. Sci., Ser. IX
,
VI
, pp.
55
64
.
50.
Pham
,
D. C.
,
1996
, “
Dynamic Shakedown and a Reduced Kinematic Theorem
,”
Int. J. Plast.
,
12
, pp.
1055
1068
.
51.
Maier, G., and Comi, C., 1997, “Variational Finite Element Modelling in Poroplasticity,” Recent Developments in Computational and Applied Mechanics, B. D. Reddy, ed., CIMNE, Barcelona, pp. 180–199.
52.
Maier
,
G.
, and
Novati
,
G.
,
1990
, “
Dynamic Shakedown and Bounding Theory for a Class of Nonlinear Hardening Discrete Structural Models
,”
Int. J. Plast.
,
6
, pp.
551
572
.
53.
Druyanov
,
B.
, and
Roman
,
I.
,
1999
, “
Conditions for Shakedown of Damaged Elastic Plastic bodies
,”
Eur. J. Mech. A/Solids
,
18
, pp.
641
651
.
54.
Dvorak
,
G. J.
,
Lagoudas
,
D. C.
, and
Huang
,
C. M.
,
1994
, “
Fatigue Damage and Shakedown in Metal Matrix Composite Laminates
,”
Mech. Compos. Mat. Struct.
,
1
, pp.
171
202
.
55.
Feng
,
X. Q.
, and
Yu
,
S. W.
,
1995
, “
Damage and Shakedown Analysis of Structures With Strain-Hardening
,”
Int. J. Plast.
,
11
, pp.
237
249
.
56.
Hachemi
,
A.
, and
Weichert
,
D.
,
1997
, “
Application of Shakedown Theory to Damaging Inelastic Material Under Mechanical and Thermal Loads
,”
Int. J. Mech. Sci.
,
39
, pp.
1067
1076
.
57.
Huang
,
Y.
, and
Stein
,
E.
,
1996
, “
Shakedown of a Cracked Body Consisting of Kinematic Hardening Material
,”
Eng. Fract. Mech.
,
54
, pp.
107
112
.
58.
Yan
,
A. M.
, and
Nguyen
,
D. H.
,
1999
, “
Limit Analysis of Cracked Structures by Mathematical Programming and Finite Element Technique
,”
Comput. Mech.
,
24
, pp.
319
333
.
59.
Nayroles
,
B.
, and
Weichert
,
D.
,
1993
, “
La notion de sanctuaire d’elasticite et d’adaptation des structures
,”
C. R. Acad. Sci., Ser. II: Mec., Phys., Chim., Sci. Terre Univers
,
316
, pp.
1493
1498
.
60.
Christiansen
,
E.
, and
Andersen
,
K. D.
,
1999
, “
Computation of Collapse States With von Mises Type Yield Condition
,”
Int. J. Numer. Methods Eng.
,
46
, pp.
1185
1202
.
61.
Tin-Loi
,
F.
,
1989
, “
A Constraint Selection Technique in Limit Analysis
,”
Appl. Math. Model.
,
13
, pp.
442
446
.
62.
Borges
,
L. A.
,
Feijo´o
,
R. A.
, and
Zouain
,
N.
,
1999
, “
A Directional Error Estimator for Adaptive Limit Analysis
,”
Mech. Res. Commun.
,
26
, pp.
555
563
.
63.
Franco
,
J. R. Q.
,
Oden
,
J. T.
,
Ponter
,
A. R. S.
, and
Barros
,
F. B.
,
1997
, “
A Posteriori Error Estimator and Adaptive Procedures for Computation of Shakedown and Limit Loads on Pressure Vessels
,”
Comput. Methods Appl. Mech. Eng.
,
150
, pp.
155
171
.
64.
Cocks
,
A. C. F.
, and
Leckie
,
F. A.
,
1988
, “
Deformation Bounds for Cyclically Loaded Shell Structures Operating Under Creep Condition
,”
ASME J. Appl. Mech.
,
55
, pp.
509
516
.
65.
Polizzotto
,
C.
,
1982
, “
A Unified Treatment of Shakedown Theory and Related Bounding Techniques
,”
Solid. Mech. Arch.
,
7
, pp.
19
75
.
66.
Genna
,
F.
,
1991
, “
Bilateral Bounds for Structures Under Dynamic Shakedown Conditions
,”
Meccanica
,
26
, pp.
37
46
.
67.
Capurso
,
M.
,
1979
, “
Some Upper Bound Principles for Plastic Strains in Dynamic Shakedown of Elastoplastic Structures
,”
J. Struct. Mech.
,
7
, pp.
1
20
.
68.
Corradi
,
L.
,
1976
, “
Mathematical Programming Methods for Displacement Bounds in Elastoplastic Dynamics
,”
Nucl. Eng. Des.
,
37
, pp.
161
177
.
69.
Maier
,
G.
,
1973
, “
Upper Bounds on Deformations of Elastic-Workhardening Structures in the Presence of Dynamic and Second-Order Effects
,”
J. Struct. Mech.
,
2
, pp.
265
280
.
70.
Ponter
,
A. R. S.
,
1975
, “
General Displacement and Work Bounds for Dynamically Loaded Bodies
,”
J. Mech. Phys. Solids
,
23
, pp.
151
163
.
71.
Taliercio
,
A.
,
1992
, “
Lower and Upper Bounds to the Macroscopic Strength Domain of a Fiber-Reinforced Composite Material
,”
Int. J. Plast.
,
8
, pp.
741
762
.
You do not currently have access to this content.