Ceramic coatings deposited on metal substrates generally develop significant compressive stresses when cooled from the temperature at which they are processed as a result of thermal expansion mismatch. One of the main failure modes for these coatings is edge delamination. For an ideally brittle interface, the edge delamination of a compressed thin film involves mode II interface cracking. The crack faces are in contact with normal stress acting across the faces behind the advancing tip. Frictional shielding of the crack tip has been shown to increase the apparent fracture toughness. Roughness effects associated with the separating faces can also contribute to the apparent toughness. A model of mode II steady-state edge delamination that incorporates combined friction and roughness effects between the delaminated film and substrate is proposed and analyzed. This model is used to assess whether frictional shielding and surface roughness effects are sufficient to explain the large apparent mode II fracture toughness values observed in experiments.
Mode II Edge Delamination of Compressed Thin Films
Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED MECHANICS. Manuscript received by the ASME Applied Mechanics Division, September 7, 2000; final revision, March 3, 2001. Associate Editor: H. Gao. Discussion on the paper should be addressed to the Editor, Professor Lewis T. Wheeler, Department of Mechanical Engineering, University of Houston, Houston, TX 77204-4792, and will be accepted until four months after final publication of the paper itself in the ASME JOURNAL OF APPLIED MECHANICS.
Balint, D. S., and Hutchinson, J. W. (March 3, 2001). "Mode II Edge Delamination of Compressed Thin Films ." ASME. J. Appl. Mech. September 2001; 68(5): 725–730. https://doi.org/10.1115/1.1388012
Download citation file: