Tape-springs are thin-walled beams with a curved cross section that can be elastically deformed to yield a flexible region of high curvature known as a fold. This feature is exploited in the folding and self-deployment of a number of recently proposed deployable structures. This study characterizes the quasi-static response of a folded tape-spring under a prescribed rotation and separation between its support points. It is shown that the corresponding end loads and fold shape are accurately predicted by a variational technique, and are confirmed by a finite element analysis. This information may then be used in further design of tape-spring hinge systems.

1.
Seffen
,
K. A.
, and
Pellegrino
,
S.
,
1999
, “
Deployment Dynamics of Tape-Springs
,”
Proc. R. Soc. London, Ser. A
,
455
, pp.
1003
1048
.
2.
Seffen, K. A., 1997, Analysis of Structures Deployed by Tape-Springs, Ph.D. thesis, University of Cambridge, Cambridge, UK.
3.
Seffen, K. A. and Pellegrino, S., 1997, “Deployment of a Rigid Panel by Tape-Springs,” Technical report, University of Cambridge, Department of Engineering, CUED/D-STRUCT/TR 168.
4.
Seffen, K. A., Pellegrino, S., and Parks, G. T., 1998, “Deployment of a Panel by Tape-Spring Hinges,” Proceedings of IUTAM-IASS Symposium on Deployable Structures: Theory and Applications, S. Pellegrino and S. D. Guest, eds., Kluwer, The Netherlands, pp. 355–364.
5.
Cambridge Consultants Ltd., 1989, “Design Study for a Mars Sailcraft,” Technical Report, Cambridge Consultants, Ltd., Q7844/JPA/Issue 1.
6.
Rits
,
W. J.
,
1996
, “
A Multipurpose Deployable Membrane Reflector
,”
ESA Bull.
,
88
, pp.
66
71
.
7.
Seffen
,
K. A.
,
You
,
Z.
, and
Pellegrino
,
S.
,
2000
, “
Folding and Deployment of Curved Springs
,”
Int. J. Mech. Sci.
,
42
, pp.
2055
2073
.
8.
Kyriakides, S., 1994, “Propagating Instabilities in Structures,” Advances in Applied Mechanics, J. W. Hutchinson and T. Y. Wu, eds. Academic Press, San Diego, CA, pp 67–189.
9.
Wuest
,
W.
,
1954
, “
Einige Anvendungen der Theorie der Zylinderschale
,”
Z. Angew. Math. Mech.
,
34
, pp.
444
454
.
10.
Rimrott
,
F. P. J.
,
1970
, “
Querschnittsverformung bei Torsion Offnerer Profile
,”
Z. Angew. Math. Mech.
,
50
, pp.
775
778
.
11.
Calladine
,
C. R.
,
1988
, “
The Theory of Thin Shell Structures, 1888–1988
,”
Proc. Inst. Mech. Eng.
,
202
, pp.
1
9
.
12.
Calladine, C. R., 1983, Theory of Shell Structures, Cambridge University Press, Cambridge, UK.
13.
Hibbitt, Karlsson, and Sorenson, 1997, ABAQUS Version 5.7, Hibbitt, Karlsson, and Sorenson, Pawtucket.
14.
Hestenes, M. R., 1980, Calculus of Variations and Optimal Control Theory, Robert E. Krieger Publishing, New York.
15.
Mathworks, 1997, MATLAB Version 5.1. The Mathworks Inc., Natick.
You do not currently have access to this content.