The dispersion relationships of a system comprising a circular bar imbedded in a solid medium having a lower acoustic impedance than the bar have been predicted. A generic study of such systems has been undertaken, motivated by a particular interest in the case of a circular steel bar imbedded in cement grout which has application to the inspection of tendons in post-tensioned concrete bridges; measurements to confirm the predictions have been carried out for this case. The attenuation dispersion curves show a series of attenuation minima at roughly equal frequency spacing. The attenuation minima occur at the same frequencies as energy velocity maxima and they correspond to points at which the particle displacements and energy of the particular mode are concentrated towards the center of the bar so leakage of energy into the imbedding medium is minimized. The attenuation at the minima decreases with increasing frequency as the energy becomes more concentrated at the middle of the bar, until the material attenuation in the bar becomes a significant factor and the attenuation at the minima rises again. For the particular case of a steel bar in cement grout, the minimum attenuation is reached at a frequency-radius product of about 23 MHz-mm. The frequency-radius product at which the minimum attenuation is reached and the value of the minimum attenuation both increase as the acoustic impedance of the imbedding medium increases.

1.
Alleyne
,
D. N.
,
Lowe
,
M. J. S.
, and
Cawley
,
P.
,
1998
, “
The Reflection of Guided Waves From Circumferential Notches in Pipes
,”
ASME J. Appl. Mech.
,
65
, pp.
635
641
.
2.
Alleyne, D. N., Cawley, P., Lank, A. M., and Mudge, P. J., 1997, “The Lamb Wave Inspection of Chemical Plant Pipework,” Review of Progress in Quantitative NDE, Vol. 16, D. O. Thompson and D. E. Chimenti, eds., Plenum Press, New York, pp. 1269–1276.
3.
Mohr
,
W.
, and
Ho¨ller
,
P.
,
1976
, “
On Inspection of Thin Walled Tubes for Transverse and Longitudinal Flaws by Guided Ultrasonic Waves
,”
IEEE Trans. Sonics Ultrason.
,
SU-23
, pp.
369
374
.
4.
Bo¨ttger
,
W.
,
Schneider
,
H.
, and
Weingarten
,
W.
,
1987
, “
Prototype EMAT System for Tube Inspection With Guided Ultrasonic Waves
,”
Nucl. Eng. Des.
,
102
, pp.
356
376
.
5.
Rose
,
J. L.
,
Ditri
,
J. J.
,
Pilarski
,
A.
,
Rajana
,
K.
, and
Carr
,
F. T.
,
1994
, “
A Guided Wave Inspection Technique for Nuclear Steam Generator Tubing
,”
NDT & E Int.
,
27
, pp.
307
330
.
6.
Alers
,
G. A.
, and
Burns
,
L. R.
,
1987
, “
EMAT Designs for Special Applications
,”
Mater. Eval.
,
45
, pp.
1184
1189
.
7.
Lowe
,
M. J. S.
, and
Cawley
,
P.
,
1994
, “
The Applicability of Plate Wave Techniques for the Inspection of Adhesive and Diffusion Bonded Joints
,”
J. NDE
,
13
, pp.
185
200
.
8.
Pochhammer
,
J.
,
1876
, “
Uber die fortpflanzungsgeschwindigkeiten kleiner schwingungen in einem unbergrenzten isotropen kreiscylinder
,”
J. Reine Angew. Math.
,
81
, pp.
324
336
.
9.
Chree
,
C.
,
1989
, “
The Equations on an Isotropic Elastic Solid in Polar and Cylindrical Coordinates, Their Solutions, and Applications
,”
Trans. Cambridge Philos. Soc.
,
14
, pp.
250
369
.
10.
Hudson
,
G. E.
,
1943
, “
Dispersion of Elastic Waves in Solid Circular Cylinders
,”
Phys. Rev.
,
63
, pp.
46
51
.
11.
Davies
,
R. M.
,
1948
, “
A Critical Study of the Hopkinson Pressure Bar
,”
Philos. Trans. R. Soc. London, Ser. A
,
240
, pp.
375
457
.
12.
Pao
,
Y.-H.
, and
Mindlin
,
R.
,
1960
, “
Dispersion of Flexural Waves in an Elastic, Circular Cylinder
,”
J. Appl. Mech.
,
27
, pp.
513
520
.
13.
Pao
,
Y. H.
,
1962
, “
The Dispersion of Flexural Waves in an Elastic, Circular Cylinder—Part 2
,”
J. Appl. Mech.
,
29
, pp.
61
64
.
14.
Onoe
,
M.
,
McNiven
,
H.
, and
Mindlin
,
R.
,
1962
, “
Dispersion of Axially Symmetric Waves in Elastic Solids
,”
J. Appl. Mech.
,
29
, pp.
729
734
.
15.
Meeker, T. R., and Meitzler, A. H., 1972, “Guided Wave Propagation in Elongated Cylinders and Plates,” Physical Acoustics, Principles and Methods, Vol. 1A, W. P. Mason and R. N. Thurston, eds., Academic Press, New York, pp. 111–167.
16.
Gazis
,
D.
,
1959
, “
Three Dimensional Investigation of the Propagation of Waves in Hollow Circular Cylinders
,”
J. Acoust. Soc. Am.
,
31
, No.
5
, pp.
568
578
.
17.
Fitch
,
A.
,
1963
, “
Observation of Elastic-Pulse Propagation in Axially Symmetric and Nonaxially Symmetric Longitudinal Modes of Hollow Cylinders
,”
J. Acoust. Soc. Am.
,
35
, No.
5
, pp.
706
708
.
18.
Kumar
,
R.
,
1971
, “
Flexural Vibrations of Fluid-Filled Circular Cylindrical Shells
,”
Acustica
,
24
, pp.
137
146
.
19.
Kumar
,
R.
,
1972
, “
Dispersion of Axially Symmetric Waves in Empty and Fluid-Filled Cylindrical Shells
,”
Acustica
,
27
, No.
6
, pp.
317
329
.
20.
Morse
,
R.
,
1954
, “
Compressional Waves Along an Anisotropic Circular Cylinder Having Hexagonal Symmetry
,”
J. Acoust. Soc. Am.
,
26
, No.
6
, pp.
1018
1021
.
21.
Mirsky
,
I.
,
1965
, “
Wave Propagation in Transversely Isotropic Circular Cylinders Part I: Theory
,”
J. Acoust. Soc. Am.
,
37
, No.
6
, pp.
1016
1021
.
22.
Xu
,
P.-C.
, and
Datta
,
S.
,
1991
, “
Characterization of Fibre-Matrix Interface by Guided Waves: Axisymmetric Case
,”
J. Acoust. Soc. Am.
,
89
, No.
6
, pp.
2573
2583
.
23.
Dayal
,
V.
,
1993
, “
Longitudinal Waves in Homogeneous Anisotropic Cylindrical Bars Immersed in Fluid
,”
J. Acoust. Soc. Am.
,
93
, No.
3
, pp.
1249
1255
.
24.
Nagy
,
P.
,
1995
, “
Longitudinal Guided Wave Propagation in a Transversely Isotropic Rod Immersed in Fluid
,”
J. Acoust. Soc. Am.
,
98
, No.
1
, pp.
454
457
.
25.
Berliner
,
M.
, and
Solecki
,
R.
,
1996
, “
Wave Propagation in Fluid-Loaded, Transversely Isotropic Cylinders. Part I. Analytical Formulation
,”
J. Acoust. Soc. Am.
,
99
, No.
4
, pp.
1841
1847
.
26.
Amos
,
D. E.
,
1998
, “
A Remark on Algorithm 644: A Portable Package for Bessel Functions of a Complex Argument and Non-Negative Order
,”
ACM Trans. Math. Softw.
,
21
, No.
4
, pp.
388
393
.
27.
Thurston
,
R.
,
1978
, “
Elastic Waves in Rods and Clad Rods
,”
J. Acoust. Soc. Am.
,
64
, No.
1
, pp.
1
37
.
28.
Safaai-Jazi
,
A.
,
Jen
,
C.-K.
, and
Farnell
,
G.
,
1966
, “
Cutoff Conditions in an Acoustic Fiber With Infinitely Thick Cladding
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
UFFC-33
, No.
1
, pp.
69
73
.
29.
Simmons
,
J.
,
Drescher-Krasicka
,
E.
, and
Wadley
,
H.
,
1992
, “
Leaky Axisymmetric Modes in Infinite Clad Rods. I
,”
J. Acoust. Soc. Am.
,
92
, No.
2
, pp.
1061
1090
.
30.
Viens
,
M.
,
Tshukahara
,
Y.
,
Jen
,
C.
, and
Cheeke
,
J.
,
1994
, “
Leaky Torsional Modes in Infinite Clad Rods
,”
J. Acoust. Soc. Am.
,
95
, No.
2
, pp.
701
707
.
31.
Berliner
,
M.
, and
Solecki
,
R.
,
1996
, “
Wave Propagation in Fluid Loaded, Transversely Isotropic Cylinders. Part II. Numerical Results
,”
J. Acoust. Soc. Am.
,
99
, No.
4
, pp.
1848
1853
.
32.
Nayfeh
,
A. H.
, and
Nagy
,
P.
,
1996
, “
General Study of Axisymmetric Waves in Layered Anisotropic Fibers and Their Composites
,”
J. Acoust. Soc. Am.
,
99
, No.
2
, pp.
931
941
.
33.
Woodward
,
R.
, and
Williams
,
F.
,
1988
, “
Collapse of the Ynys-Y-Gwas Bridge, West-Glamorgan
,”
Proc. Inst. Civil Eng.
,
84
, Aug., pp.
635
669
.
34.
Parker
,
D.
,
1996
, “
Tropical Overload
,”
New Civil Eng.
, 12/26 Dec., pp. 18–21.
35.
Parker
,
D.
,
1996
, “
Pacific Bridge Collapse Throws Doubts on Repair Method
,”
New Civil Eng.
, Oct 17, pp. 3–4.
36.
Niles
,
G. B.
,
1996
, “
In Situ Method of Inspecting Anchor Rods for Section Loss Using the Cylindrically Guided Wave Technique
,”
IEEE Trans. Power Deliv.
,
11
, No.
3
, pp.
1601
1605
.
37.
Weight, J. P., 1994, private communication concerning ultrasonic tests on grouted tendons carried out in 1994, City University, London.
38.
Lowe
,
M. J. S.
,
1995
, “
Matrix Techniques for Modelling Ultrasonic Waves in Multilayered Media
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
42
, pp.
525
542
.
39.
Pavlakovic, B., Lowe, M. J. S., Alleyne, D. N., and Cawley, P., 1997, “Disperse: A general Purpose Program for Creating Dispersion Curves,” Review of Progress in Quantitative NDE, Vol. 16, D. O. Thompson and D. E. Chimenti, eds., Plenum Press, New York, pp. 185–192.
40.
Pavlakovic, B. N., 1998, “Leaky Guided Ultrasonic Waves in NDT,” Ph.D. thesis, Imperial College, University of London, London, available at http://wallop.me.ic.ac.uk/ndt/theses/brian_thesis.pdf.
41.
Kaye, G., and Laby, T., 1995, Tables of Physical and Chemical Constants, 16 Ed., Harlow: Longman’s, London.
42.
Silk
,
M.
, and
Bainton
,
K.
,
1979
, “
The Propagation in Metal Tubing of Ultrasonic Wave Modes Equivalent to Lamb Waves
,”
Ultrasonics
,
17
, pp.
11
19
.
43.
Stoneley, R., 1924, “Elastic Waves at the Surface of Separation of Two Solids,” Conference of the Royal Society, Royal Society, London, pp. 416–428.
44.
Scholte
,
J.
,
1947
, “
The Range of Existence of Rayleigh and Stoneley Waves
,”
Geophysics
,
5
, pp.
120
126
.
45.
Bernard, A., Deschamps, M., and Lowe, M. J. S., 1999, “Energy Velocity and Group Velocity for Guided Waves Propagating Within an Absorbing or Non-absorbing Plate in Vacuum,” Review of Progress in Quantitative NDE, 18, D. O. Thompson and D. E. Chimenti, eds., Plenum Press, New York, in press.
46.
Chan
,
C. W.
, and
Cawley
,
P.
,
1998
, “
Lamb Waves in Highly Attenuative Plastic Plates
,”
J. Acoust. Soc. Am.
,
104
, pp.
874
881
.
47.
Pavlakovic, B., Lowe, M. J. S., and Cawley, P., 1999, “Prediction of Reflection Coefficients From Defects in Embedded Bars,” Review of Progress in Quantitative NDE, 18, D. O. Thompson and D. E. Chimenti, eds., Plenum Press, New York, in press.
48.
O¨nsay
,
T.
, and
Haddow
,
A. G.
,
1994
, “
Wavelet Transform Analysis of Transient Wave Propagation in a Dispersive Medium
,”
J. Acoust. Soc. Am.
,
95
, No.
3
, pp.
1441
1449
.
You do not currently have access to this content.