This work investigates the stability of axially moving media subjected to parametric excitation resulting from tension and translation speed oscillations. Each of these excitation sources has spectral content with multiple frequencies and arbitrary phases. Stability boundaries for primary parametric instabilities, secondary instabilities, and combination instabilities are determined analytically through second-order perturbation. The classical result that primary instability occurs when one of the excitation frequencies is close to twice a natural frequency changes as a result of multiple excitation frequencies. Unusual interactions occur for the practically important case of simultaneous primary and secondary instabilities. While sum type combination instabilities occur, no difference type instabilities are detected. The nonlinear limit cycle amplitude that occurs under primary instability is derived using the method of multiple scales.

1.
Mockensturm
,
E. M.
,
Perkins
,
N. C.
, and
Ulsoy
,
A. G.
,
1996
, “
Stability and Limit Cycles of Parametrically Excited, Axially Moving Strings
,”
ASME J. Vibr. Acoust.
,
118
, July, pp.
346
351
.
2.
Pakdemirli
,
M.
, and
Ulsoy
,
A. G.
,
1997
, “
Stability Analysis of an Axially Accelerating String
,”
J. Sound Vib.
,
203
, No.
5
, pp.
815
832
.
3.
Mahalingam
,
S.
,
1957
, “
Transverse Vibrations of Power Transmission Chains
,”
Br. J. Appl. Phys.
,
8
, pp.
145
148
.
4.
Mote
,
C. D.
Jr.
,
1965
, “
A Study of Band Saw Vibrations
,”
J. Franklin Inst.
,
279
, No.
6
, pp.
430
444
.
5.
Mote
,
C. D.
Jr.
,
1968
, “
Dynamic Stability of an Axially Moving Band
,”
J. Franklin Inst.
,
285
, No.
5
, pp.
329
346
.
6.
Naguleswaran
,
S.
, and
Williams
,
C. J. H.
,
1968
, “
Lateral Vibrations of Band Saw Blades, Pulley Belts, and the Like
,”
Int. J. Mech. Sci.
,
10
, pp.
239
250
.
7.
Asokanthan
,
S.
, and
Ariaratnam
,
S.
,
1994
, “
Flexural Instabilities in Axially Moving Bands
,”
ASME J. Vibr. Acoust.
,
116
, No.
3
, pp.
275
279
.
8.
Oz
,
H. R.
,
Pakdemirli
,
M.
, and
Ozkaya
,
E.
,
1998
, “
Transition Behavior From String to Beam for an Axially Accelerating Material
,”
J. Sound Vib.
,
215
, No.
3
, pp.
571
576
.
9.
Chakraborty
,
G.
, and
Mallik
,
A. K.
,
1998
, “
Parametrically Excited Non-linear Traveling Beams With and Without External Forcing
,”
Nonlinear Dyn.
,
17
, No.
4
, pp.
301
324
.
10.
Ulsoy
,
A. G.
,
Whitesell
,
J. E.
, and
Hooven
,
M. D.
,
1985
, “
Design of Belt-Tensioner Systems for Dynamic Stability
,”
ASME J. Vibr. Acoust.
,
107
, No.
3
, pp.
282
290
.
11.
Nayfeh, A. H., and Mook, D. T., 1979, Nonlinear Oscillations, John Wiley and Sons, New York.
12.
Wickert
,
J. A.
, and
Mote
,
C. D.
Jr.
,
1990
, “
Classical Vibration Analysis of Axially Moving Continua
,”
ASME J. Appl. Mech.
,
57
, pp.
738
744
.
13.
McLachlan, N. W., 1947, Theory and Applications of Mathieu Functions, Oxford University Press, New York.
You do not currently have access to this content.