We discuss under what conditions multiple-parameter asymmetric linear dynamical systems can be transformed into equivalent symmetric systems by nonsingular linear transformations. So far, in structural dynamics literature this problem has been addressed in the context of the original work by Taussky. Taussky’s approach of symmetrization was based on similarity transformation. In this paper an approach is proposed to transform asymmetric systems into symmetric systems by equivalence transformation. We call Taussky’s approach of symmetrization by similarity transformation “first kind” and proposed approach by equivalence transformation “second kind.” Since equivalence transformations are most general nonsingular linear transformations, conditions of symmetrizability obtained here are more “liberal” than the first kind and numerical calculations also become more straightforward. Several examples are provided to illustrate the new approach. [S0021-8936(00)00504-3]
On Symmetrizable Systems of Second Kind
Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Sept. 21, 1999; final revision, May 2, 2000. Associate Technical Editor: A. A. Ferri. Discussion on the paper should be addressed to the Technical Editor, Professor Lewis T. Wheeler, Department of Mechanical Engineering, University of Houston, Houston, TX 77204-4792, and will be accepted until four months after final publication of the paper itself in the ASME JOURNAL OF APPLIED MECHANICS.
Adhikari, S. (May 2, 2000). "On Symmetrizable Systems of Second Kind ." ASME. J. Appl. Mech. December 2000; 67(4): 797–802. https://doi.org/10.1115/1.1322038
Download citation file: