We discuss under what conditions multiple-parameter asymmetric linear dynamical systems can be transformed into equivalent symmetric systems by nonsingular linear transformations. So far, in structural dynamics literature this problem has been addressed in the context of the original work by Taussky. Taussky’s approach of symmetrization was based on similarity transformation. In this paper an approach is proposed to transform asymmetric systems into symmetric systems by equivalence transformation. We call Taussky’s approach of symmetrization by similarity transformation “first kind” and proposed approach by equivalence transformation “second kind.” Since equivalence transformations are most general nonsingular linear transformations, conditions of symmetrizability obtained here are more “liberal” than the first kind and numerical calculations also become more straightforward. Several examples are provided to illustrate the new approach. [S0021-8936(00)00504-3]

1.
Huseyin
,
K.
, and
Liepholz
,
H. H. E.
,
1973
, “
Divergence Instability of Multiple Parameter Circulatory Systems
,”
Q. Appl. Math.
,
31
, pp.
185
197
.
2.
Fawzy
,
I.
, and
Bishop
,
R. E. D.
,
1977
, “
On the Nature of Resonance in Nonconservative Systems
,”
J. Sound Vib.
,
55
, No.
4
, pp.
475
485
.
3.
Bishop
,
R. E. D.
, and
Price
,
W. G.
,
1979
, “
An Investigation Into the Linear Theory of Ship Response to Waves
,”
J. Sound Vib.
,
62
, No.
3
, pp.
353
363
.
4.
Soom
,
A.
, and
Kim
,
C.
,
1983
, “
Roughness-Induced Dynamic Loading at Dry Boundary-Lubricated Sliding Contacts
,”
ASME J. Lubr. Technol.
,
105
, pp.
514
517
.
5.
Caughey
,
T. K.
, and
Ma
,
F.
,
1993
, “
Complex Modes and Solvability of Nonclassical Linear Systems
,”
ASME Trans. J. Appl. Mech.
,
60
, pp.
26
28
.
6.
Fawzy
,
I.
, and
Bishop
,
R. E. D.
,
1976
, “
On the Dynamics of Linear Nonconservative Systems
,”
Proc. R. Soc. London, Ser. A
,
A352
, pp.
25
40
.
7.
Ma
,
F.
, and
Caughey
,
T. K.
,
1995
, “
Analysis of Linear Conservative Vibrations
,”
ASME J. Appl. Mech.
,
62
, pp.
685
691
.
8.
Adhikari
,
S.
,
1999
, “
Modal Analysis of Linear Asymmetric Nonconservative Systems
,”
J. Eng. Mech.
,
125
, No.
12
, pp.
1372
1379
.
9.
Kliem
,
W. R.
,
1992
, “
Symmetrizable Systems in Mechanics and Control Theory
,”
ASME Trans. J. Appl. Mech.
,
69
, pp.
454
456
.
10.
Taussky
,
O.
,
1968
, “
Positive Definite Matrices and Their Role in the Study of the Characteristic Roots of General Matrices
,”
Adv. Math.
,
2
, pp.
175
186
.
11.
Taussky
,
O.
, and
Zassenhaus
,
H.
,
1959
, “
On the Similarity Transformation Between a Matrix and Its Transpose
,”
Pac. J. Math.
,
9
, pp.
893
896
.
12.
Inman
,
D. J.
,
1983
, “
Dynamics of Asymmetric Nonconservative Systems
,”
ASME Trans. J. Appl. Mech.
,
50
, pp.
199
203
.
13.
Ahmadian
,
M.
, and
Inman
,
D. J.
,
1984
, “
Classical Normal Modes in Asymmetric Nonconservative Dynamic Systems
,”
AIAA J.
,
22
, No.
7
, pp.
1012
1015
.
14.
Ahmadian
,
M.
, and
Inman
,
D. J.
,
1984
, “
On the Nature of Eigenvalues of General Nonconservative Systems
,”
ASME Trans. J. Appl. Mech.
,
51
, pp.
193
194
.
15.
Ahmadian
,
M.
, and
Chou
,
S.-H.
,
1987
, “
A New Method for Finding Symmetric Form of Asymmetric Finite-Dimensional Dynamic Systems
,”
ASME Trans. J. Appl. Mech.
,
54
, pp.
700
705
.
16.
Shahruz
,
S. M.
, and
Ma
,
F.
,
1989
, “
On Symmetrizability of Asymmetric Nonconservative Systems
,”
ASME Trans. J. Appl. Mech.
,
56
, pp.
474
476
.
17.
Cherng
,
A.
, and
Abdelhamid
,
M. K.
,
1993
, “
On the Symmetrization of Asymmetric Finite Dimensional Linear Dynamic Systems
,”
ASME J. Vibr. Acoust.
,
115
, pp.
417
421
.
18.
Taussky
,
O.
,
1972
, “
The Role of Symmetric Matrices in the Study of General Matrices
,”
Linear Algebr. Appl.
,
5
, pp.
147
154
.
19.
Pommer
,
C.
, and
Kliem
,
W. R.
,
1987
, “
Simultaneously Normalizable Matrices
,”
Linear Algebr. Appl.
,
94
, pp.
113
125
.
20.
Eckrat
,
C.
, and
Young
,
G.
,
1939
, “
A Principal Axis Transformation for Non-Hermitian Matrices
,”
Bull. Am. Math. Soc.
,
45
, pp.
118
121
.
21.
Williamson
,
J.
,
1939
, “
Note on a Principal Axis Transformation for Non-Hermitian Matrices
,”
Bull. Am. Math. Soc.
,
45
, pp.
920
922
.
22.
Pearl
,
M. H.
,
1967
, “
A Decomposition Theorem for Matrices
,”
Can. J. Math.
,
19
, pp.
344
349
.
23.
Huseyin, K., 1978, Vibration and Stability of Multiple Parameter Systems, Sijthoff and Noordhoff, Alpen aan den Rijn, The Netherlands.
24.
Thompson
,
R. C.
,
1969
, “
On Pearl’s Paper ‘A Decomposition Theorem for Matrices,’
Canadian Mathematical Bulletin
12
, pp.
805
808
.
You do not currently have access to this content.