The Laplace finite element alternating method, which combines the Laplace transform technique and the finite element alternating method, is developed to deal with the elastodynamic analysis of a finite plate with multiple cracks. By the Laplace transform technique, the complicated elastodynamic fracture problem is first transformed into an equivalent static fracture problem in the Laplace transform domain and then solved by the finite element alternating method developed. To do this, an analytical solution by Tsai and Ma for an infinite plate with a semi-infinite crack subjected to exponentially distributed loadings on crack surfaces in the Laplace transform domain is adopted. Finally, the real-time response can be computed by a numerical Laplace inversion algorithm. The technique established is applicable to the calculation of dynamic stress intensity factors of a finite plate with arbitrarily distributed edge cracks or symmetrically distributed central cracks. Only a simple finite element mesh with very limited number of regular elements is necessary. Since the solutions are independent of the size of time increment taken, the dynamic stress intensity factors at any specific instant can even be computed by a single time-step instead of step-by-step computations. The interaction among the cracks and finite geometrical boundaries on the dynamic stress intensity factors is also discussed in detail. *[S0021-8936(00)02103-6]*

*The Wiener-Hopf Technique*, Vol. 17, Pergamon Press, New York, pp. 247–268.