For elastoplastic trusses under quasi-static cyclic loading, a method is presented for finding the steady-state limit that bounds the plastic shakedown and ratchetting regions. In the plastic shakedown region, an assumption employed in the previous approaches for finding the steady-state limit can be invalid in many circumstances. Although strain reversals were assumed to occur only at load reversals, yielding of an element exhibiting plastic shakedown may cause strain reversals in other elements. This difficulty is overcome by relaxing this assumption so that the strain reversals due to yielding are taken into account. Numerical examples showed that the present method can find the steady-state limit even when strong effects of geometrical nonlinearity exist. [S0021-8936(00)01201-0]

1.
Koiter, W. T., 1960, “General Theorems for Elastic-Plastic Structures,” Progress in Solid Mechanics, Vol. 1, J. N. Sneddon and R. Hill, eds., North Holland, Amsterdam, pp. 167–221.
2.
Bree
,
J.
,
1967
, “
Elastic-Plastic Behavior of Thin Tubes Subjected to Internal Pressure and Intermittent High-Heat Fluxes With Application to Fast-Nuclear-Reactor Fuel Elements
,”
J. Strain Anal.
,
6
, pp.
236
249
.
3.
Zarka, J., and Casier, J., 1979, “Elastic-Plastic Response of a Structure to Cyclic Loading: Practical Rules,” Mechanics Today, S. Nemat-Nasser, ed., Pergamon Press, New York, pp. 93–198.
4.
Ko¨nig, J. A., 1987, Shakedown of Elastic-Plastic Structures, Elsevier, Amsterdam.
5.
Nguyen
,
Q. S.
,
Gary
,
G.
, and
Baylac
,
G.
,
1983
, “
Interaction Buckling-Progressive Deformation
,”
Nucl. Eng. Des.
,
75
, pp.
235
243
.
6.
Siemaszko
,
A.
, and
Ko¨nig
,
J. A.
,
1985
, “
Analysis of Stability of Incremental Collapse of Skeletal Structures
,”
J. Struct. Mech.
,
13
, pp.
301
321
.
7.
Uetani
,
K.
, and
Nakamura
,
T.
,
1983
, “
Symmetry Limit Theory for Cantilever Beam-Columns Subjected to Cyclic Reversed Bending
,”
J. Mech. Phys. Solids
,
31
, pp.
449
484
.
8.
Maier, G., Pan, L. G., and Perego, U., 1993, “Geometric Effects on Shakedown and Ratchetting of Axisymmetric Cylindrical Shells Subjected to Variable Thermal Loading,” Eng. Struct., 15, pp. 453–465.
9.
Uetani
,
K.
, and
Araki
,
Y.
,
1999
, “
Steady-State Limit Analysis of Elastoplastic Trusses Under Cyclic Loads
,”
Int. J. Solids Struct.
,
36
, pp.
3051
3071
.
10.
Hill
,
R.
,
1958
, “
A General Theory of Uniqueness and Stability in Elastic-Plastic Solids
,”
J. Mech. Phys. Solids
,
6
, pp.
236
249
.
11.
Drucker
,
D. C.
,
Prager
,
W.
, and
Greenberg
,
H. J.
,
1952
, “
Extended Limit Design Theorems for Continuous Media
,”
Quarterly Appl. Math.
,
9
, pp.
381
389
.
12.
Ponter
,
A. R. S.
, and
Karadeniz
,
S.
,
1985
, “
An Extended Shakedown Theory for Structures That Suffer Cyclic Thermal Loadings, Part 1: Theory
,”
ASME J. Appl. Mech.
,
52
, pp.
877
882
.
13.
Ponter
,
A. R. S.
, and
Karadeniz
,
S.
,
1985
, “
An Extended Shakedown Theory for Structures That Suffer Cyclic Thermal Loadings, Part 2: Applications
,”
ASME J. Appl. Mech.
,
52
, pp.
883
889
.
14.
Polizzotto
,
C.
,
1993
, “
A Study on Plastic Shakedown of Structures, Part I: Basic Properties
,”
ASME J. Appl. Mech.
,
60
, pp.
318
323
.
15.
Polizzotto
,
C.
,
1993
, “
A Study on Plastic Shakedown of Structures, Part II: Theorems
,”
ASME J. Appl. Mech.
,
60
, pp.
324
330
.
16.
Polizzotto
,
C.
, and
Borio
,
G.
,
1996
, “
Shakedown and Steady-State Responses of Elastic-Plastic Solids in Large Displacements
,”
Int. J. Solids Struct.
,
33
, pp.
3415
3437
.
17.
Uetani, K., 1984, “Symmetry Limit Theory and Steady-State Limit Theory for Elastic-Plastic Beam-Columns Subjected to Repeated Alternating Bending,” Ph.D. thesis, Kyoto University, Kyoto (in Japanese).
18.
Crisfield, M. A., 1991, Non-linear Finite Element Analysis of Solids and Structures, Vol. 1, John Wiley and Sons, New York.
19.
Yokoo
,
Y.
,
Nakamura
,
T.
, and
Uetani
,
K.
,
1976
, “
The Incremental Perturbation Method for Large Displacement Analysis of Elastic-Plastic Structures
,”
Int. J. Numer. Methods Eng.
,
10
, pp.
503
525
.
You do not currently have access to this content.