The principle of virtual work and Lagrange’s equations of motion are used to construct a system of differential equations for constrained spatial multibody system modeling. The differential equations are augmented with algebraic constraints representing the system being modeled. The resulting system is a high index differential-algebraic equation (DAE) which is cast as an ordinary differential equation (ODE) by differentiating the constraint equations twice. The initial conditions are the heliocentric rectangular equatorial generalized coordinates and their first time derivatives of the planets of the solar system and an artificial satellite. The ODE is computed using the integration subroutine LSODAR to generate the body generalized coordinates and time derivatives and hence produce the planetary ephemerides and satellite trajectories for a time interval. Computer simulation and graphical output indicate the satellite and planetary positions and the latter may be compared with those provided in the Astronomical Almanac. Constraint compliance is investigated to establish the accuracy of the computation. [S0021-8936(00)03403-6]

1.
Haug, E. J., ed., 1984, Computer Aided Analysis and Optimization of Mechanical System Dynamics (NATO ASI Series, Vol. F9), Springer-Verlag, Berlin.
2.
Nikravesh, P. E., 1988, Computer Aided Analysis of Mechanical Systems, Prentice-Hall, Englewood Cliffs, NJ.
3.
Shabana, A. A., 1988, Dynamics of Multibody Systems, John Wiley and Sons, New York.
4.
Shabana, A. A., 1994, Computational Dynamics, John Wiley and Sons, New York.
5.
Ryan, R. R., 1990, “ADAMS—Multibody System Analysis Software,” Multibody Systems Handbook, Springer-Verlag, Berlin.
6.
Adams Internet Site, http://www.adams.com/
7.
Smith, R. C., and Haug, E. J., 1990, “DADS: Dynamic Analysis and Design System,” Multibody Systems Handbook, Springer-Verlag, Berlin.
8.
Lupker, H. A., de Coo, P. J. A., Nieboer, J. J., and Wismans, J., 1991, “Advances in MADYMO Crash Simulations,” Internal Report 910879, TNO Road-Vehicles Research Institute Delft, Delft, The Netherlands.
9.
Fox, B., Jennings, L. S., and Zomaya, A. Y., 1999, “Numerical Computation of Differential-Algebraic Equations for Nonlinear Dynamics of Multibody Systems,” submitted for publication.
10.
Fox
,
B.
,
Jennings
,
L. S.
, and
Zomaya
,
A. Y.
,
1999
, “
Numerical Computation of Differential-Algebraic Equations for Nonlinear Dynamics of Multibody Android Systems in Automobile Crash Simulation
,”
IEEE Trans. Biomed. Eng.
,
46
, No.
10
, pp.
1199
1206
.
11.
Simeon, B., Fuhrer, C., and Rentrop, R., 1991, “Differential-Algebraic Equations in Vehicle System Dynamics,” Surveys on Mathematics for Industry, Springer-Verlag, New York.
12.
Brennan, K. E., Campbell, S. L., and Petzold, L. R., 1989, Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations, Elsevier, New York.
13.
Ascher, U. M., and Petzold, L. R., 1992, “Numerical Methods for Boundary Value Problems in Differential Algebraic Equations,” Recent Developments in Numerical Methods and Software for ODEs/DAEs/PDEs, G. D. Byrn and W. E. Schiesser, eds., World Scientific Publishers, Singapore.
14.
Byrn, G. D., and Schiesser, W. E., 1992, “An Overview of Recent Developments in Numerical Methods and Software for ODEs/DAEs/PDEs” Recent Developments in Numerical Methods and Software for ODEs/DAEs/PDEs, G. D. Bryne and W. E. Schiesser, eds., World Scientific Publishers, Singapore.
15.
Gear, C. W., 1991, “An Introduction to Numerical Methods for ODEs and DAEs,” Real Time Integration Methods for Mechanical System Simulation (NATO, ASI Series, Vol. F69), E. J. Haug, ed., Springer-Verlag, Berlin.
16.
Gear
,
C. W.
, and
Petzold
,
L. R.
,
1984
, “
ODE Methods for the Solution of Differential/algebraic Systems
,”
SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.
,
21
, No. 4. Aug. pp.
716
728
.
17.
Petzold
,
L. R.
,
1982
, “
Differential/Algebraic Equations are not ODEs
,”
SIAM J. Sci. Stat. Comput.
,
3
, No.
3
, pp.
367
384
.
18.
Petzold, L. R., 1983, “A Description of DASSL: A Differential/Algebraic System Solver,” Scientific Comput., R. Stepleman et al., eds., North-Holland, Amsterdam.
19.
Petzold, L. R., 1991, “Methods and Software for Differential-Algebraic Systems,” Real Time Integration Methods for Mechanical System Simulation (NATO ASI Series, Vol. F69), E. J. Haug, ed., Springer-Verlag, Berlin.
20.
Petzold, L. R., and Hindmarsh, A. E., “LSODAR,” Computing and Mathematics Research Division, 1-316 Lawrence Livermore National Laboratory, Livermore, CA.
21.
Petzold
,
L. R.
,
Ren
,
Y.
, and
Maly
,
T.
,
1997
, “
Regularization of Higher-Index Defferential-Algebraic Equations With Rank-Deficient Constraints
,”
SIAM J. Sci. Comput. (USA)
,
18
, No.
3
, pp.
753
774
.
22.
Yen
,
J.
, and
Petzold
,
L. R.
,
1998
, “
An Efficient Newton-Type Iteration for the Numerical Solution of Highly Oscillatory Constrained Multibody Dynamic Systems
,”
SIAM J. Sci. Comput. (USA)
,
19
, No.
5
, pp.
1513
1534
.
23.
Nakanishi
,
T.
, and
Shabana
,
A. A.
,
1994
, “
Contact Forces in the Nonlinear Dynamic Analysis of Tracked Vehicles
,”
Int. J. Numer. Comput. Meth. Eng.
,
37
, pp.
1251
1275
.
24.
Nakanishi
,
T.
, and
Shabana
,
A. A.
,
1994
, “
On the Numerical Solution of Tracked Vehicle Dynamic Equations
,”
Nonlinear Dyn.
,
6
, pp.
391
417
.
25.
Rismantab-Sany
,
J.
, and
Shabana
,
A. A.
,
1989
, “
On the Numerical Solution of Differential/Algebraic Equations of Motion of Deformable Mechanical Systems With Nonholonomic Constraints
,”
Comput. Struct.
,
33
, No.
4
, pp.
1017
1029
.
26.
Sarwar
,
M. K.
,
Nakanishi
,
T.
, and
Shabana
,
A. A.
,
1995
, “
Chain Link Deformation in the Nonlinear Dynamics of Tracked Vehicles
,”
J. of Vib. Control
,
1
, pp.
201
224
.
1.
JPL internet sites: (1) http://www.willbell.com/software/jpl.htm;
2.
(2) http://www.nssdc.gsfc.nasa.gov/space/helios/planet.html;
3.
(3) http://ssd.jpl.nasa.gov/iau-comm4/
1.
Astronomical Almanac (for the year 1998), 1997, U.S. Government Printing Office, Washington, DC (HMSO London).
2.
Green, R. M., 1985, Spherical Astronomy, Cambridge University Press, Cambridge, UK.
3.
Standish
, Jr.,
E. M.
,
1990
, “
The Observational Basis for JPL’s DE200: The Planetary Ephermerides of the Astronomical Almanac
,”
Astron. Astrophys.
,
233
, pp.
252
271
.
4.
Standish
, Jr.,
E. M.
,
1990
, “
An Approximation to the Outer Planet Ephermeris Errors in JCP’s DE200
,”
Astron. Astrophys.
,
233
, pp.
272
274
.
5.
Netlib internet site, http://www.netlib.org/
6.
Nikravesh, P. E., 1984, “Spatial Kinematic and Dynamic Analysis With Euler Parameters,” Computer Aided Analysis and Optimization of Mechanical System Dynamics (NATO ASI Series, Vol. F9), E. J. Haug, ed., Springer-Verlag, Berlin.
7.
Nikravesh
,
P. E.
, and
Chung
,
I. S.
,
1982
, “
Application of Euler Parameters to the Dynamic Analysis of Three-Dimensional Constrained Mechanical Systems
,”
ASME J. Mech. Des.
,
104
, pp.
785
791
.
8.
Nikravesh
,
P. E.
,
Wehage
,
R. A.
, and
Kwon
,
O. K.
,
1985
, “
Euler Parameters in Computational Kinematics and Dynamics, Part I
,”
ASME, J. Mech. Transmission and Automation in Design
,
107
, pp.
358
365
.
9.
Nikravesh
,
P. E.
,
Wehage
,
R. A.
, and
Kwon
,
O. K.
,
1985
, “
Euler Parameters in Computational Kinematics and Dynamics
,”
ASME J. Mech. Transmission and Automation in Design
,
107
, pp.
366
369
.
10.
Danby, J. M. A., 1992, Fundamentals of Celestial Mechanics, 2nd Ed., Willmann-Bell, Richmond, VA.
11.
Carroll, B. W., and Ostlie, D. A., 1996, An Introduction to Modern Astrophysics, Addison-Wesley, Reading, MA.
12.
Kibble, T. W. B., 1985, Classical Mechanics, 3rd Ed., Longman, New York.
13.
Bressoud, D. M., 1991, Second Year Calculus: From Celestial Mechanics to Special Relativity (Undergraduate Texts in Mathematics, Readings in Mathematics), Springer-Verlag, New York.
14.
Shirley, J. H., and Fairbridge, R. W., eds., 1997, Encyclopedia of Planetary Sciences, Chapman and Hall, London.
15.
Newhall
,
X. X.
,
Standish
, Jr.,
E. M.
, and
Williams
,
J. G.
,
1983
, “
DE 102: A Numerically Integrated Ephemeris of the Moon and Planets Spanning Forty-Four Centuries
,”
Astron. Astrophys.
,
125
, pp.
150
167
.
16.
Fisher, M. E., 1989, “Introductory Numerical Methods With the NAG Software Library,” Mathematics Department, The University of Western Australia, Perth.
17.
Horn, R. A., and Johnson, L. R., 1991, Topics in Matrix Analysis, Cambridge University Press, Cambridge, UK.
18.
Mehta, M. L., 1977, Elements of Matrix Theory, Hindustan, Delhi, India.
19.
Jennings
,
L. S.
,
Fisher
,
M. E.
,
Teo
,
K. L.
, and
Goh
,
C. J.
,
1991
, “
MISER3: Solving Optimal Control Problems: An Update
,”
Adv. Eng. Softw.
,
13
, No.
4
, pp.
190
196
.
You do not currently have access to this content.