Analytical solutions for the static three-dimensional deformations of multilayered piezoelectric rectangular plates are obtained by using the Eshelby-Stroh formalism. The laminated plate consists of homogeneous elastic or piezoelectric laminae of arbitrary thicknesses. The equations of static, linear, piezoelectricity are exactly satisfied at every point in the body. The analytical solution is in terms of an infinite series; the continuity conditions at the interfaces and boundary conditions at the edges are used to determine the coefficients. The formulation admits different boundary conditions at the edges and is applicable to thick and thin laminated plates. Results are presented for thick piezoelectric plates with two opposite edges simply supported and the other two subjected to various boundary conditions. [S0021-8936(00)01803-1]

1.
Crawley
,
E. F.
, and
de Luis
,
J.
,
1987
, “
Use of Piezoelectric Actuators as Elements of Intelligent Structures
,”
AIAA J.
,
25
, pp.
1373
1385
.
2.
Im
,
S.
, and
Atluri
,
S. N.
,
1989
, “
Effects of a Piezo-Actuator on a Finitely Deformed Beam Subjected to General Loading
,”
AIAA J.
,
27
, pp.
1801
1807
.
3.
Crawley
,
E. F.
, and
Anderson
,
E. H.
,
1990
, “
Detailed Models of Piezoceramic Actuation of Beams
,”
J. Intell. Mater. Syst. Struct.
,
1
, pp.
4
25
.
4.
Lee
,
C. K.
,
1990
, “
Theory of Laminated Piezoelectric Plates for the Design of Distributed Sensors/Actuators. Part 1: Governing Equations and Reciprocal Relationships
,”
J. Acoust. Soc. Am.
,
87
, pp.
1144
1158
.
5.
Wang
,
B. T.
, and
Rogers
,
C. A.
,
1991
, “
Laminate Plate Theory for Spatially Distributed Induced Strain Actuators
,”
J. Compos. Mater.
,
25
, pp.
433
452
.
6.
Huang
,
J. H.
, and
Wu
,
T. L.
,
1996
, “
Analysis of Hybrid Multilayered Piezoelectric Plates
,”
Int. J. Eng. Sci.
,
34
, pp.
171
181
.
7.
Mitchell
,
J. A.
, and
Reddy
,
J. N.
,
1995
, “
A Refined Hybrid Plate Theory for Composite Laminates With Piezoelectric Laminae
,”
Int. J. Solids Struct.
,
32
, pp.
2345
2367
.
8.
Robbins
,
D. H.
, and
Reddy
,
J. N.
,
1991
, “
Analysis of Piezoelectrically Actuated Beams Using a Layer-Wise Displacement Theory
,”
Comput. Struct.
,
41
, pp.
265
279
.
9.
Ha
,
S. K.
,
Keilers
,
C.
, and
Chang
,
F. K.
,
1992
, “
Finite Element Analysis of Composite Structures Containing Piezoceramic Sensors and Actuators
,”
AIAA J.
,
30
, pp.
772
780
.
10.
Heyliger
,
P.
,
Ramirez
,
G.
, and
Saravanos
,
D.
,
1994
, “
Coupled Discrete-Layer Finite Elements for Laminated Piezoelectric Plates
,”
Commun. Numer. Meth. Eng.
,
10
, pp.
971
981
.
11.
Batra
,
R. C.
, and
Liang
,
X. Q.
,
1997
, “
Finite Dynamic Deformations of Smart Structures
,”
Comput. Mech.
,
20
, pp.
427
438
.
12.
Vlasov, B. F., 1957, “On One Case of Bending of Rectangular Thick Plates,” Vestnik Moskovskogo Universiteta. Serie¨iı`a Matematiki, mekhaniki, astronomii, fiziki, khimii, No. 2, pp. 25–34, (in Russian).
13.
Pagano
,
N. J.
,
1969
, “
Exact Solutions for Composite Laminates in Cylindrical Bending
,”
J. Compos. Mater.
,
3
, pp.
398
411
.
14.
Pagano
,
N. J.
,
1970
, “
Exact Solutions for Rectangular Bidirectional Composites and Sandwich Plates
,”
J. Compos. Mater.
,
4
, pp.
20
34
.
15.
Srinivas
,
S.
, and
Rao
,
A. K.
,
1970
, “
Bending, Vibration and Buckling of Simply Supported Thick Orthotropic Rectangular Plates and Laminates
,”
Int. J. Solids Struct.
,
6
, pp.
1463
1481
.
16.
Ray
,
M. C.
,
Rao
,
K. M.
, and
Samanta
,
B.
,
1993
, “
Exact Solution for Static Analysis of Intelligent Structures Under Cylindrical Bending
,”
Comput. Struct.
,
47
, pp.
1031
1042
.
17.
Heyliger
,
P.
, and
Brooks
,
S.
,
1996
, “
Exact Solutions for Laminated Piezoelectric Plates in Cylindrical Bending
,”
ASME J. Appl. Mech.
,
63
, pp.
903
910
.
18.
Bisegna
,
P.
, and
Maceri
,
F.
,
1996
, “
An Exact Three-Dimensional Solution for Simply Supported Rectangular Piezoelectric Plates
,”
ASME J. Appl. Mech.
,
63
, pp.
628
638
.
19.
Lee
,
J. S.
, and
Jiang
,
L. Z.
,
1996
, “
Exact Electroelastic Analysis of Piezoelectric Laminae via State Space Approach
,”
Int. J. Solids Struct.
,
33
, pp.
977
990
.
20.
Heyliger
,
P.
,
1994
, “
Static Behavior of Laminated Elastic/Piezoelectric Plates
,”
AIAA J.
,
32
, pp.
2481
2484
.
21.
Heyliger
,
P.
,
1997
, “
Exact Solutions for Simply Supported Laminated Piezoelectric Plates
,”
ASME J. Appl. Mech.
,
64
, pp.
299
306
.
22.
Tang
,
Y. Y.
,
Noor
,
A. K.
, and
Xu
,
K.
,
1996
, “
Assessment of Computational Models for Thermoelectroelastic Multilayered Plates
,”
Comput. Struct.
,
61
, pp.
915
933
.
23.
Saravanos
,
D. A.
,
Heyliger
,
P. R.
, and
Hopkins
,
D. A.
,
1997
, “
Layerwise Mechanics and Finite Element for the Dynamic Analysis of Piezoelectric Composite Plates
,”
Int. J. Solids Struct.
,
34
, pp.
359
378
.
24.
Eshelby
,
J. D.
,
Read
,
W. T.
, and
Shockley
,
W.
,
1953
, “
Anisotropic Elasticity With Applications to Dislocation Theory
,”
Acta Metall.
,
1
, pp.
251
259
.
25.
Stroh
,
A. N.
,
1958
, “
Dislocations and Cracks in Anisotropic Elasticity
,”
Philos. Mag.
,
3
, pp.
625
646
.
26.
Ting, T. C. T., 1996, Anisotropic Elasticity. Theory and Applications, Oxford University Press, New York.
27.
Vel
,
S. S.
, and
Batra
,
R. C.
,
2000
, “
The Generalized Plane Strain Deformations of Thick Anisotropic Composite Laminated Plates
,”
Int. J. Solids Struct.
,
37
, pp.
715
733
.
28.
Vel
,
S. S.
, and
Batra
,
R. C.
,
2000
, “
Cylindrical Bending of Laminated Plates With Distributed and Segmented Piezoelectric Actuators/Sensors
,”
AIAA J.
,
38
, pp.
857
867
.
29.
Vel
,
S. S.
, and
Batra
,
R. C.
,
1999
, “
Analytical Solution for Rectangular Thick Laminated Plates Subjected to Arbitrary Boundary Conditions
,”
AIAA J.
,
37
, pp.
1464
1473
.
30.
Tiersten, H. F., 1969, Linear Piezoelectric Plate Vibrations, Plenum Press, New York.
31.
Suo
,
Z.
,
Kuo
,
C.-M.
,
Barnett
,
D. M.
, and
Willis
,
J. R.
,
1992
, “
Fracture Mechanics for Piezoelectric Ceramics
,”
J. Mech. Phys. Solids
,
40
, pp.
739
765
.
32.
Tashiro
,
K.
,
Tadokoro
,
H.
, and
Kobayashi
,
M.
,
1981
, “
Structure and Piezoelectricity of Poly(Vinylidene Flouride)
,”
Ferroelectrics
,
32
, pp.
167
175
.
33.
Nye, J. F., 1985, Physical Properties of Crystals, Oxford University Press, New York.
34.
Batra
,
R. C.
,
Liang
,
X. Q.
, and
Yang
,
J. S.
,
1996
, “
The Vibration of a Simply Supported Rectangular Elastic Plate Due to Piezoelectric Actuators
,”
Int. J. Solids Struct.
,
33
, pp.
1597
1618
.
You do not currently have access to this content.