This paper deals with the general problem of directly relating the distribution of ranges of wide band random processes to the power spectral density (PSD) by means of closed-form expressions. Various attempts to relate the statistical distribution of ranges to the PSD by means of the irregularity factor or similar parameters have been done by several authors but, unfortunately, they have not been fully successful. In the present study, introducing the so-called analytic processes, the reasons for which these parameters are insufficient to an unambiguous determination of the range distribution and the fact that parameters regarding the time-derivative processes are needed have been explained. Furthermore, numerical simulations have shown that the range distributions depend on the irregularity factor and bandwidth parameter of both the process and its derivative. These observations are the basis for the determination of accurate relationships between range distributions and PSDs. [S0021-8936(00)02903-2]

1.
Nigam, N. C., 1983, Introduction to Random Vibrations, M.I.T. Press, Cambridge, MA.
2.
Leadbetter, M. R., Lindgren, G., and Rootzen, G., 1983, Extreme and Related Properties of Random Sequences and Processes, Springer-Verlag, New York.
3.
Crandall, S. H., and Mark, W. D., 1963, Random Vibration in Mechanical System, Academic Press, New York.
4.
Cramer, H., and Leadbetter, M. R., 1967, Stationary and Related Stochastic Processes, John Wiley and Sons, New York.
5.
Lin, Y. K., 1967, Probabilistic Theory of Structural Dynamics, McGraw-Hill, New York.
6.
Wirsching
,
P. H.
, and
Light
,
M. C.
,
1980
, “
Fatigue Under Wide band Random Stresses
,”
J. Struct. Div. ASCE
,
106
, No.
ST7
, pp.
1593
1607
.
7.
Dowling
,
N. E.
,
1983
, “
Fatigue Life Prediction for Complex Load Versus Time Histories
,”
J. Eng. Mater. Technol.
,
105
, pp.
206
214
.
8.
Tunna
,
J. M.
,
1985
, “
Random Load Fatigue: Theory and Experiment
,”
Proc. Inst. Mech. Eng.
,
199
, No.
C3
, pp.
249
257
.
9.
Tunna
,
J. M.
,
1986
, “
Fatigue Life Prediction for Gaussian Random Loads
,”
Fatigue Fract. Eng. Mater. Struct.
,
9
, No.
3
, pp.
169
184
.
10.
Lindgren
,
G.
, and
Rychlik
,
I.
,
1987
, “
Rain Flow Cycle Distributions for Fatigue Prediction Under Gaussian Load Processes
,”
Fatigue Fract. Eng. Mater. Struct.
,
10
, No.
3
, pp.
251
260
.
11.
Rychlik
,
I.
,
1992
, “
Rain Flow Cycle in Gaussian Loads
,”
Fatigue Fract. Eng. Mater. Struct.
,
15
, No.
1
, pp.
57
72
.
12.
Kim
,
J. J.
, and
Kim
,
H. Y.
,
1994
, “
Simple Method for Evaluation of Fatigue Damage of Structures in Wide Band Random Vibration
,”
Proc. Inst. Mech. Eng.
,
208
, pp.
65
68
.
13.
Lutes
,
L. D.
,
Corazao
,
M.
,
Hu
,
S. J.
, and
Zimmerman
,
J.
,
1984
, “
Stochastic Fatigue Damage Accumulation
,”
J. Struct. Eng.
,
110
, No.
4
, pp.
2585
2601
.
14.
Vanmarke
,
E. H.
,
1972
, “
Properties of Spectral Moments With Applications to Random Vibrations
,”
J. Eng. Mech.
,
98
, pp.
425
446
.
15.
Papoulis, A., 1984, Signal Analysis, McGraw-Hill, New York.
16.
Di Paola
,
M.
,
1985
, “
Transient Spectral Moments of Linear System
,”
S.M. Arch.
,
10
, pp.
225
243
.
17.
Di Paola
,
M.
, and
Petrucci
,
G.
,
1990
, “
Spectral Moments and Pre-envelope Covariances of Nonseparable Processes
,”
ASME J. Appl. Mech.
,
57
, pp.
218
224
.
18.
Madsen, H. O., Krenk, S., and Lind, N. C., 1986, Methods of Structural Safety, Prentice-Hall, Englewood Cliffs, NJ.
19.
Sobczyk, K., and Spencer, B. F., 1992, Random Fatigue From Data to Theory, Academic Press, San Diego.
20.
Wirsching, P. H., Paez, T. L., and Ortiz, K., 1995, Random Vibrations, John Wiley and Sons, New York.
21.
Petrucci
,
G.
, and
Zuccarello
,
B.
,
1999
, “
On the Estimation of the Fatigue Cycle Distribution From Spectral Density Data
,”
J. Mech. Eng. Sci.
,
213
, pp.
819
831
.
22.
Davenport, A. G., and Novak, M., 1988, Shock & Vibration Handbook, p. 23, C. M. Harris, ed., McGraw-Hill, New York, Chap. 29.
You do not currently have access to this content.