The problem of a fiber attached to an infinite sheet (Melan’s problem) has been reconsidered under the hypothesis that the adherence between the two bodies is not perfect. We have assumed that the link is guaranteed by the so-called “weak interface,” i.e., we have supposed that the jump of the displacement is linearly proportional to the interface stress. The solutions of (i) the case with a concentrated force acting on the fiber and (ii) the case of the redistribution of stresses as a consequence of the rupture of the fiber have been obtained in closed form. We have discussed how the interface stiffness k influences the solutions and, in particular, the interfacial stress. Emphasis is placed on determining how the zone of influence of the applied load is modified by k. Approximate (though accurate) simple expressions for the length of the zone of influence are given and discussed. [S0021-8936(00)01001-1]

1.
Melan
,
E.
,
1932
, “
Ein Beitrag zur Theori geschweisster Verbindungen
,”
Ing.-Arch.
,
3
, pp.
123
129
.
2.
Love, A. E. H., 1926, A Treatise on the Mathematical Theory of Elasticity, Oxford Univ. Press, Oxford (reprinted by Dover, New York, 1944).
3.
Koiter
,
W. T.
,
1955
, “
On the Diffusion of Load From a Stiffener into a Sheet
,”
Q. J. Mech. Appl. Math.
,
VIII
, pp.
164
178
.
4.
Buell
,
E. L.
,
1948
, “
On the Distribution of Plane Stress in a Semi-infinite Plate With Partially Stiffened Edge
,”
J. Math. Phys.
,
26
, pp.
223
233
.
5.
Benscoter
,
S.
,
1949
, “
Analysis of a Single Stiffener on an Infinite Sheet
,”
ASME J. Appl. Mech.
,
16
, pp.
242
246
.
6.
Erdogan
, and
F.
,
Gupta
,
G. D.
,
1971
, “
The Problem of an Elastic Stiffener Bonded to a Half Plane
,”
ASME J. Appl. Mech.
,
38
, pp.
937
941
.
7.
Lee
,
E. J.
, and
Klang
,
E. C.
,
1992
, “
Stress Distribution in an Edge-Stiffened Semi-Infinite Elastic Plate Containing a Circular Hole
,”
ASME J. Appl. Mech.
,
59
, pp.
789
795
.
8.
Muki
,
R.
, and
Sternberg
,
E.
,
1967
, “
Transfer of Load From an Edge Stiffener to a Sheet—A Reconsideration of Melan’s Problem
,”
ASME J. Appl. Mech.
,
34
, pp.
679
686
.
9.
Shield
,
T. W.
, and
Kim
,
K. S.
,
1992
, “
Beam Theory Models for Thin Film Segments Cohesively Bonded to an Elastic Half Space
,”
Int. J. Solids Struct.
,
29
, pp.
1085
1103
.
10.
Bufler
,
H.
,
1964
, “
Zur Krafteinleitung in Scheiben Uber Geschweisste Oder Geklebte Verbindungen
,”
Ing.-Arch.
,
18
, p.
284
284
.
11.
Reissner
,
E.
,
1940
, “
Note on the Problem of Distribution of Stress in a Thin Stiffened Elastic Sheet
,”
Proc. Natl. Acad. Sci. USA
26
, pp.
300
305
.
12.
Goodier
,
J. N.
, and
Hsu
,
C. S.
,
1954
, “
Transmission of Tension From a Bar to a Plate
,”
ASME J. Appl. Mech.
,
21
, pp.
147
150
.
13.
LeFevre
,
E. J.
,
Mudge
,
D. R. J.
, and
Dickie
,
J. F.
,
1966
, “
An Analysis of the Distribution of Tension in a Bar Attached to a Plate
,”
J. Strain Anal.
,
1
, pp.
389
393
.
14.
Muki
,
R.
, and
Sternberg
,
E.
,
1968
, “
On the Diffusion of Load From a Transverse Tension Bar Into a Semi-Infinite Elastic Sheet
,”
ASME J. Appl. Mech.
,
35
, pp.
737
746
.
15.
Grigolyuk, E. I., and Tolkachev, V. M., 1987, Contact Problems in the Theory of Plates and Shells, Mir, Moscow.
16.
Budiansky
,
B.
, and
Wu
,
T. T.
,
1961
, “
Transfer of a Load to a Sheet From a Rivet-Attached Stiffener
,”
J. Math. Phys.
,
40
, pp.
142
162
.
17.
Rybakov
,
L. S.
, and
Cherepanov
,
G. P.
,
1977
, “
Discrete Interaction of a Plate With a Semi-infinite Stiffener
,”
Prikl. Mat. Mekh.
,
41
, pp.
322
328
.
18.
Rybakov
,
L. S.
,
1982
, “
On Discrete Interaction of a Plate and a Damaged Stringer
,”
J. Appl. Math. Mech.
, (transl. of Prik. Mat. Mek.)
45
, pp.
127
133
19.
Antipov
,
Y. A.
, and
Arutyunyan
,
N. K.
,
1993
, “
A Contact Problem With Friction and Adhesion for an Elastic Layer With Stiffeners
,”
J. Appl. Math. Mech.
,
57
, pp.
159
170
(transl. of Prik. Mat. Mek.).
20.
Goland
,
M.
, and
Reissner
,
E.
,
1944
, “
The Stresses in Cemented Joints
,”
ASME J. Appl. Mech.
,
11
, pp.
A17–A27
A17–A27
.
21.
Gilibert
,
Y.
, and
Rigolot
,
A.
,
1979
, “
Analyze Asymptotique des Assemblage Colle´s a Double Recouvrement Sollicite´s au Cisaillement en Traction
,”
J. Mec. Appl.
,
3
, No.
3
, pp.
341
372
.
22.
Klarbring
,
A.
,
1991
, “
Derivation of a Model of Adhesively Bonded Joints by the Asymptotic Expansion Method
,”
Int. J. Eng. Sci.
,
29
, pp.
493
512
.
23.
Geymonat
,
G.
,
Krasucki
,
F.
, and
Lenci
,
S.
,
1999
, “
Mathematical Analysis of a Bonded Joint With Soft Thin Adhesive
,”
Math. Mech. Sol.
,
4
, pp.
201
225
.
24.
Gradshteyn, I. S., and Ryzhik, I. M., 1965, Tables of Integrals, Series, and Products, Academic Press, New York.
25.
Abramowitz, M., and Stegun, I. A., 1965, Handbook of Mathematical Functions, Dover Publications, New York.
26.
Muskhelishvili, N. I., 1953, Some Basic Problems of the Mathematical Theory of Elasticity, Noordhoff, Leyden.
You do not currently have access to this content.