The focus of this paper is on constructing the solution for a semi-infinite hydraulic crack for arbitrary toughness, which accounts for the presence of a lag of a priori unknown length between the fluid front and the crack tip. First, we formulate the governing equations for a semi-infinite fluid-driven fracture propagating steadily in an impermeable linear elastic medium. Then, since the pressure in the lag zone is known, we suggest a new inversion of the integral equation from elasticity theory to express the opening in terms of the pressure. We then calculate explicitly the contribution to the opening from the loading in the lag zone, and reformulate the problem over the fluid-filled portion of the crack. The asymptotic forms of the solution near and away from the tip are then discussed. It is shown that the solution is not only consistent with the square root singularity of linear elastic fracture mechanics, but that its asymptotic behavior at infinity is actually given by the singular solution of a semi-infinite hydraulic fracture constructed on the assumption that the fluid flows to the tip of the fracture and that the solid has zero toughness. Further, the asymptotic solution for large dimensionless toughness is derived, including the explicit dependence of the solution on the toughness. The intermediate part of the solution (in the region where the solution evolves from the near tip to the far from the tip asymptote) of the problem in the general case is obtained numerically and relevant results are discussed, including the universal relation between the fluid lag and the toughness. [S0021-8936(00)02401-6]

1.
Khristianovic, S. A., and Zheltov, Y. P., “Formation of Vertical Fractures by Means of Highly Viscous Fluids,” Proc. 4th World Petroleum Congress, Vol. II, pp. 579–586.
2.
Barenblatt
,
G. I.
,
1962
, “
The Mathematical Theory of Equilibrium Cracks in Brittle Fracture
,”
,
VII
, pp.
55
129
.
3.
Perkins
,
T. K.
, and
Kern
,
L. R.
,
1961
, “
Widths of Hydraulic Fractures
,”
SPEJ
,
222
, pp.
937
949
.
4.
Nordgren
,
R. P.
,
1972
, “
Propagation of Vertical Hydraulic Fracture
,”
SPEJ
,
253
, pp.
306
314
.
5.
Abe
,
H.
,
Mura
,
T.
, and
Keer
,
L. M.
,
1976
, “
Growth Rate of a Penny-Shaped Crack in Hydraulic Fracturing of Rocks
,”
J. Geophys. Res.
,
81
, pp.
5335
5340
.
6.
Geertsma
,
J.
, and
Haafkens
,
R.
,
1979
, “
A Comparison of the Theories for Predicting Width and Extent of Vertical Hydraulically Induced Fractures.
ASME J. Energy Resour. Technol.
,
101
, pp.
8
19
.
7.
Spence
,
D. A.
, and
Sharp
,
P.
,
1985
, “
Self-Similar Solution for Elastohydrodynamic Cavity Flow
,”
Proc. R. Soc. London, Ser. A
,
400
, pp.
289
313
.
8.
Spence
,
D. A.
, and
Turcotte
,
D. L.
,
1985
, “
Magma-Driven Propagation Crack
,”
J. Geophys. Res.
,
90
, pp.
575
580
.
9.
Lister
,
J. R.
,
1990
, “
Buoyancy-Driven Fluid Fracture: The Effects of Material Toughness and of Low-Viscosity Precursors
,”
J. Fluid Mech.
,
210
, pp.
263
280
.
10.
Carbonell, R. S., and Detournay, E., 2000, “Self-Similar Solution of a Fluid Driven Fracture in a Zero Toughness Elastic Solid,” Proc. R. Soc. London, Ser. A, to be submitted.
11.
Savitski, A., and Detournay, E., 1999, “Similarity Solution of a Penny-Shaped Fluid-Driven Fracture in a Zero-Toughness Linear Elastic Solid,” C. R. Acad. Sci. Paris, submitted for publication.
12.
Bui
,
H. D.
, and
Parnes
,
R.
,
1992
, “
A Reexamination of the Pressure at the Tip of a Fluid-Filled Crack
,”
Int. J. Eng. Sci.
,
20
, No.
11
, pp.
1215
1220
.
13.
Medlin, W. L., and Masse, L., 1984, “Laboratory Experiments in Fracture Propagation,” SPEJ, pp. 256–268.
14.
Rubin
,
A. M.
,
1993
, “
Tensile Fracture of Rock at High Confining Pressure: Implications for Dike Propagation
,”
J. Geophys. Res.
,
98
, No.
B9
, pp.
15919
15935
.
15.
Desroches
,
J.
,
Detournay
,
E.
,
Lenoach
,
B.
,
Papanastasiou
,
P.
,
Pearson
,
J. R. A.
,
Thiercelin
,
M.
, and
Cheng
,
A. H.-D.
,
1994
The Crack Tip Region in Hydraulic Fracturing
,”
Proc. R. Soc. London, Ser. A
,
447
, pp.
39
48
.
16.
Lenoach
,
B.
,
1995
, “
The Crack Tip Solution for Hydraulic Fracturing in a Permeable Solid
,”
J. Mech. Phys. Solids
,
43
, No.
7
, pp.
1025
1043
.
17.
,
S. H.
,
Lee
,
T. S.
,
Dean
,
R. H.
,
Pak
,
C. K.
, and
Avasthi
,
J. M.
,
1997
, “
Consequences of Fluid Lag in Three-Dimensional Hydraulic Fractures
,”
Int. J. Numer. Anal. Meth. Geomech.
,
21
, pp.
229
240
.
18.
Papanastasiou
,
P.
,
1997
, “
The Influence of Plasticity in Hydraulic Fracturing
,”
Int. J. Fract.
,
84
, pp.
61
97
.
19.
Garagash
,
D.
, and
Detournay
,
E.
,
1998
, “
Similarity Solution of a Semi-Infinite Fluid-Driven Fracture in a Linear Elastic Solid
,”
C. R. Acad. Sci., Ser. II b
,
326
, pp.
285
292
.
20.
Detournay, E., and Garagash, D., 1999, “The Tip Region of a Fluid-Driven Fracture in a Permeable Elastic Solid,” J. Fluid Mech., submitted for publication.
21.
Carbonell
,
R.
,
Desroches
,
J.
, and
Detournay
,
E.
,
2000
, “
A Comparison Between a Semi-analytical and a Numerical Solution of a Two-Dimensional Hydraulic Fracture
,”
Int. J. Solids Struct.
,
36
, No.
31–32
, pp.
4869
4888
.
22.
Detournay, E., 1999, “Fluid and Solid Singularities at the Tip of a Fluid-Driven Fracture,” Non-Linear Singularities in Deformation and Flow, D. Durban and J. R. A. Pearson, eds., Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 27–42.
23.
Garagash, D., and Detournay, E., 2000, “Plane Strain Propagation of a Hydraulic Fracture: Influence of Material Toughness, Fluid Viscosity, and Injection Rate,” Proc. R. Soc. London, Ser. A, to be submitted.
24.
Huang
,
N.
,
Szewczyk
,
A.
, and
Li
,
Y.
,
1990
, “
Self-Similar Solution in Problems of Hydraulic Fracturing
,”
ASME J. Appl. Mech.
,
57
, pp.
877
881
.
25.
Batchelor, G. K., 1967, An Introduction to Fluid Mechanics, Cambridge University Press, Cambridge, UK.
26.
Rice, J. R., 1968, “Mathematical Analysis in the Mechanics of Fracture,” Fracture: An Advanced Treatise, Vol II, Academic Press, San Diego, CA, pp. 191–311.
27.
van Dam, D. B., de Pater, C. J., and Romijn, R., 1998, “Analysis of Hydraulic Fracture Closure in Laboratory Experiments, SPE/ISRM 47380. Proc. Of EuRock’98, Rock Mechanics in Petroleum Engineering, SPE, Trondheim, Norway, pp. 365–374.
28.
van Dam, D. B., 1999, “The Influence of Inelastic Rock Behaviour on Hydraulic Fracture Geometry,” Ph.D. thesis, Delft Institute of Technology, Delft University Press, Delft, The Netherlands.
29.
Srivastava, H. M., and Buschman, R. G., 1992, Theory and Applications of Convolution Integral Equations: Mathematics and Its Applications, Kluwer Academic Publishers, Dordrecht, The Netherlands.