Air-flotation ovens are widely used for noncontact support and drying of coated paper and plastic films (generically called webs). The main components in typical air-flotation ovens are air bars which have slot nozzles or holes through which hot air jets are ejected. Problems in air-flotation drying techniques include sideward motion of the web, web flutter, and contact between the web and air bars. The key to analyzing these problems is to determine the aerodynamic forces on the web. This paper discusses the aerodynamic forces generated by pressure-pad-type air bars, each of which has two slot nozzles. Ground-effect theories, which were originally developed for the design of hovercraft, are re-examined. The theories are compared with the measured values of the aerodynamic forces for typical air bars. It is shown that ground effect theories can be applied to pressure-pad-type air bars if we properly define the equivalent values of the ground effect variables, which include thickness of the air jet, flotation height, ejection angle of the air jet, and the effective total pressure of the air jet. [S0021-8936(00)02801-4]
Aerodynamic Characteristics of Pressure-Pad Air Bars
e-mail: ybae@okstate.edu
Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Jan. 1, 1999; final revision, Sept. 10, 1999. Associate Technical Editor: R. C. Benson. Discussion on the paper should be addressed to the Technical Editor, Professor Lewis T. Wheeler, Department of Mechanical Engineering, University of Houston, Houston, TX 77204-4792, and will be accepted until four months after final publication of the paper itself in the ASME JOURNAL OF APPLIED MECHANICS.
Chang, Y. B., and Moretti, P. M. (September 10, 1999). "Aerodynamic Characteristics of Pressure-Pad Air Bars ." ASME. J. Appl. Mech. March 2000; 67(1): 177–182. https://doi.org/10.1115/1.321161
Download citation file: