To describe elastic material behavior the starting point is the isochoric-volumetric decoupling of the strain energy function. The volumetric part is the central subject of this contribution. First, some volumetric functions given in the literature are discussed with respect to physical conditions, then three new volumetric functions are developed which fulfill all imposed conditions. One proposed function which contains two material parameters in addition to the compressibility parameter is treated in detail. Some parameter fits are carried out on the basis of well-known volumetric strain energy functions and experimental data. A generalization of the proposed function permits an unlimited number of additional material parameters.  Dedicated to Professor Franz Ziegler on the occasion of his 60th birthday. [S0021-8936(00)00901-6]

1.
Ogden, R. W., 1984, Non-Linear Elastic Deformations, Ellis Horwood, Chichester, UK.
2.
Flory
,
P. J.
,
1961
, “
Thermodynamic Relations for High Elastic Materials
,”
Trans. Faraday Soc.
,
57
, pp.
829
838
.
3.
Penn
,
R. W.
,
1970
, “
Volume Changes Accompanying the Extension of Rubber
,”
Trans. Soc. Rheol.
,
14
, No.
4
, pp.
509
517
.
4.
van den Bogert
,
P. A. J.
,
de Borst
,
R.
,
Luiten
,
G. T.
, and
Zeilmaker
,
J.
,
1991
, “
Robust Finite Elements for 3D—Analysis of Rubber-Like Materials
,”
Eng. Comput.
,
8
, pp.
3
17
.
5.
Ogden, R. W., 1982, “Elastic Deformations of Rubberlike Solids,” Mechanics of Solids, The Rodney Hill 60th Anniversary Volume H. G. Hopkins and M. J. Sewell eds., Pergamon Press, Tarrytown, NY, pp. 499–537.
6.
Ciarlet, P. G., 1988, Mathematical Elasticity. Volume 1: Three Dimensional Elasticity, Elsevier, Amsterdam.
7.
Liu
,
C. H.
, and
Mang
,
H. A.
,
1996
, “
A Critical Assessment of Volumetric Strain Energy Functions for Hyperelasticity at Large Strains
,”
Z. Angew. Math. Mech.
,
76
, No.
S5
, pp.
305
306
.
8.
Sussman
,
T.
, and
Bathe
,
K. J.
,
1987
, “
A Finite Element Formulation for Nonlinear Incompressible Elastic and Inelastic Analysis
,”
Comput. Struct.
,
26
, No.
1–2
, pp.
357
409
.
9.
Simo
,
J. C.
,
1988
, “
A Framework for Finite Strain Elastoplasticity Based on Maximum Plastic Dissipation and the Multiplicative Decomposition: Part I. Continuum Formulation
,”
Comput. Methods Appl. Mech. Eng.
,
66
, pp.
199
219
.
10.
van den Bogert, P. A. J., and de Borst, R., 1990, “Constitutive Aspects and Finite Element Analysis of 3D Rubber Specimens in Compression and Shear,” NUMETA 90: Numerical Methods in Engineering: Theory and Applications, G. N. Pande and J. Middleton, eds., Elsevier Applied Science, Swansea, pp. 870–877.
11.
Chang
,
T. Y.
,
Saleeb
,
A. F.
, and
Li
,
G.
,
1991
, “
Large Strain Analysis of Rubber-Like Materials Based on a Perturbed Lagrangian Variational Principle
,”
Comput. Mech.
,
8
, pp.
221
233
.
12.
Hencky
,
H.
,
1933
, “
The Elastic Behavior of Vulcanized Rubber
,”
ASME J. Appl. Mech.
,
1
, pp.
45
53
.
13.
Valanis
,
K. C.
, and
Landel
,
R. F.
,
1967
, “
The Strain-Energy Function of a Hyperplastic Material in Terms of the Extension Ratios
,”
J. Appl. Phys.
,
38
, No.
7
, pp.
2997
3002
.
14.
Simo
,
J. C.
,
Taylor
,
R. L.
, and
Pfister
,
K. S.
,
1985
, “
Variational and Projection Methods for Volume Constraint in Finite Deformation Elasto-Plasticity
,”
Comput. Methods Appl. Mech. Eng.
,
51
, pp.
177
208
.
15.
Simo
,
J. C.
,
1992
, “
Algorithms for Static and Dynamic Multiplicative Plasticity That Preserve the Classical Return Mapping Schemes of the Infinitesimal Theory
,”
Comput. Methods Appl. Mech. Eng.
,
99
, pp.
61
112
.
16.
Roehl
,
D.
, and
Ramm
,
E.
,
1996
, “
Large Elasto-Plastic Finite Element Analysis of Solids and Shells With the Enhanced Assumed Strain Concept
,”
Int. J. Solids Struct.
,
33
, No.
20–22
, pp.
3215
3237
.
17.
Simo
,
J. C.
, and
Taylor
,
R. L.
,
1982
, “
Penalty Function Formulations for Incompressible Nonlinear Elastostatics
,”
Comput. Methods Appl. Mech. Eng.
,
35
, pp.
107
118
.
18.
Ogden
,
R. W.
,
1972
, “
Large Deformation Isotropic Elasticity: on the Correlation of Theory and Experiment for Compressible Rubberlike Solids
,”
Proc. R. Soc. London, Ser. A
,
328
, pp.
567
583
.
19.
Simo
,
J. C.
, and
Taylor
,
R. L.
,
1991
, “
Quasi-Incompressible Finite Elasticity in Principal Stretches. Continuum Basis and Numerical Algorithms
,”
Comput. Methods Appl. Mech. Eng.
,
85
, pp.
273
310
.
20.
Miehe
,
C.
,
1994
, “
Aspects of the Formulation and Finite Element Implementation of Large Strain Isotropic Elasticity
,”
Int. J. Numer. Methods Eng.
,
37
, pp.
1981
2004
.
21.
Kaliske
,
M.
, and
Rothert
,
H.
,
1997
, “
On the Finite Element Implementation of Rubber-Like Materials at Finite Strains
,”
Eng. Comput.
,
14
, pp.
216
232
.
22.
Liu, C. H., Hofstetter, G., Mang, H. A., 1992, “Evaluation of 3D FE-Formulations for Incompressible Hyperplastic Materials at Finite Strains,” Proceedings of the First European Conference on Numerical Methods in Engineering C. Hirsch, O. C. Zienkiewicz, and E. On˜ate, eds., Sept. 7–11, Brussels, Belgium, Elsevier Science, Ltd., pp. 757–764.
23.
Liu
,
C. H.
,
Hofstetter
,
G.
, and
Mang
,
H. A.
,
1994
, “
3D Finite Element Analysis of Rubber-Like Materials at Finite Strains
,”
Eng. Comput.
,
11
, pp.
111
128
.
24.
Murnaghan, F. D., 1951, Finite Deformation of an Elastic Solid, John Wiley and Sons, New York.
You do not currently have access to this content.