Elastic-plastic rate-independent materials with isotropic hardening/softening of nonlocal nature are considered in the context of small displacements and strains. A suitable thermodynamic framework is envisaged as a basis of a nonlocal associative plasticity theory in which the plastic yielding laws comply with a (nonlocal) maximum intrinsic dissipation theorem. Additionally, the rate response problem for a (continuous) set of (macroscopic) material particles, subjected to a given total strain rate field, is discussed and shown to be characterized by a minimum principle in terms of plastic coefficient. This coefficient and the relevant continuum tangent stiffness matrix are shown to admit, in the region of active plastic yielding, some specific series representations. Finally, the structural rate response problem for assigned load rates is studied in relation to the solution uniqueness, and two variational principles are provided for this boundary value problem.

1.
Acharya
A.
, and
Shawki
T. G.
,
1995
, “
Thermodynamic Restrictions on Constitutive Equations for Second-Deformation-Gradient Inelastic Behaviour
,”
J. Mech. Phys. Solids
, Vol.
43
, pp.
1751
1772
.
2.
Acharya
A.
, and
Shawki
T. G.
,
1996
, “
The Clausius-Dubem Inequality and the Structure of Rate-Independent Plasticity
,”
Int. J. Plasticity
, Vol.
12
, pp.
229
238
.
3.
Aifantis
E. C.
,
1984
, “
On the Role of Gradients in the Localization of Deformation and Fracture
,”
J. Engn. Sci.
, Vol.
30
, pp.
1279
1299
.
4.
Bazˇant
Z. P.
, and
Lin
F. B.
,
1988
, “
Nonlocal Yield Limit Degradation
,”
Int. J. Num. Meths. Engng.
, Vol.
26
, pp.
1805
1823
.
5.
Bazˇant, Z. P., and Cedolin, L., 1991, Stability of Structures, Oxford University Press, New York.
6.
Borre´
G.
, and
Maier
G.
,
1989
, “
On Linear Versus Nonlinear Flow Rules in Strain Localization Analysis
,”
Meccanica
, Vol.
24
, pp.
36
41
.
7.
Capurso, M., 1969, “Minimum Principles in Elastic-Plastic Incremental Analysis Problems,” Atti Acc. Naz. Lincei, Ser. VIII, Vol. XLIV, Fasc. 4–5, pp. 552–560 (in Italian).
8.
Capurso
M.
, and
Maier
G.
,
1970
, “
Incremental Elastoplastic Analysis and Quadratic Optimization
,”
Meccanica
, Vol.
V
, pp.
107
116
.
9.
Coleman
B. D.
, and
Gurtin
M.
,
1967
, “
Thermodynamics With Internal Variables
,”
J. Chem. Phys.
, Vol.
47
, pp.
597
613
.
10.
Coleman
B. D.
, and
Hodgdon
M. L.
,
1985
, “
On Shear Bands in Ductile Materials
,”
Arch. Ration. Mech. Anal.
, Vol.
90
, pp.
219
247
.
11.
Coleman
B. D.
, and
Noll
W.
,
1963
, “
The Thermodynamics of Elastic Materials With Heat Conduction and Viscosity
,”
Arch. Ration. Mech. Anal.
, Vol.
13
, pp.
167
178
.
12.
de Borst
R.
, and
Mu¨hlhaus
H.-B.
,
1992
, “
Gradient-Dependent Plasticity: Formulation and Algorithmic Aspects
,”
Int. J. Num. Meth. Eng.
, Vol.
35
, pp.
521
539
.
13.
de Borst
R.
,
Sluys
L. J.
,
Mu¨hlhaus
H.-B.
, and
Pamin
J.
,
1993
, “
Fundamental Issues in Finite Element Analyses of Localization of Deformation
,”
Engineering Computations
, Vol.
10
, pp.
99
121
.
14.
de Borst, R., Pamin, J., and Sluys, L. J., 1995, “Gradient Plasticity for Localization Problems in Quasi-Brittle and Frictional Materials,” Computational Plasticity, Fundamentals and Applications, D. R. J. Owen, E. Onate, and E. Hinton, eds., Pineridge Press, Swansea, UK, pp. 509–533.
15.
de Borst
R.
, and
Pamin
J.
,
1996
, “
Gradient Plasticity in Numerical Simulation of Concrete Cracking
,”
Eur. J. Mech. A/Solids
, Vol.
15
, pp.
295
320
.
16.
Edelen
D. G. B.
,
Green
A. E.
, and
Laws
N.
,
1971
, “
Nonlocal Continuum Mechanics
,”
Arch. Rat. Mech. Anal.
, Vol.
43
, pp.
36
44
.
17.
Edelen
D. G. B.
, and
Laws
N.
,
1971
, “
On the Thermodynamics of Systems With Nonlocality
,”
Arch. Rational Mech. Anal.
, Vol.
43
, pp.
24
35
.
18.
Eringen
A. C.
,
1981
, “
On Nonlocal Plasticity
,”
Int. J. Engng. Sci.
, Vol.
19
, pp.
1461
1474
.
19.
Eringen
A. C.
,
1983
, “
Theories of Nonlocal Plasticity
,”
Int. J. Engng. Sci.
, Vol.
21
, pp.
741
751
.
20.
Germain
P.
,
Nguyen
Q. S.
, and
Suquet
P.
,
1983
, “
Continuum Thermodynamics
,”
ASME JOURNAL OF APPLIED MECHANICS
, Vol.
50
, pp.
1010
1021
.
21.
Hill, R., 1950, The Mathematical Theory of Plasticity, Clarendon Press, Oxford, UK.
22.
Hill
R.
, and
Hutchinson
J. W.
,
1975
, “
Bifurcation Phenomena in the Plane Tensile Test
,”
J. Mech. Phys. Solids
, Vol.
23
, pp.
239
264
.
23.
Hutchinson
J. W.
, and
Tvergaard
V.
,
1981
, “
Shear Band Formation in Plane Strain
,”
Int. J. Solids Struct.
, Vol.
17
, pp.
451
470
.
24.
Larsy
D.
, and
Belytschko
T.
,
1988
, “
Localization Limiters in Transient Problems
,”
Int., L Solids Strucr
, Vol.
24
, pp.
581
597
.
25.
Lemaitre, J., and Chaboche, J.-L., 1990, Mechanics of Solid Materials, Cambridge University Press, Cambridge, UK.
26.
Loret
B.
,
1987
, “
Non-Linearite´ Iucrementale et Localisation des De´formations: Quelques Remarques
,”
J. de. Me´c. The´or. Appl.
, Vol.
6
, pp.
423
459
.
27.
Lubliner
J.
,
1973
, “
On the Structure of the Rate Equations of Materials With Internal Variables
,”
Acta Mech.
, Vol.
17
, pp.
109
119
.
28.
Lubliner, J., 1990, Plasticity Theory, Macmillan, New York.
29.
Martin, J. B., 1975, Plasticity: Fundamentals and General Results, The MIT Press, Cambridge, MA.
30.
Mu¨ihlbaus
H.-B.
, and
Vardulakis
l.
,
1987
, “
The Thickness of Shear Bands in Granular Materials
,”
Geotechnique
, Vol.
37
, pp.
271
283
.
31.
Mu¨hlhaus
H.-B.
, and
Aifantis
E. C.
,
1991
, “
A Variational Principle for Gradient Plasticity
,”
Int. J. Solids Struct.
, Vol.
28
, pp.
845
858
.
32.
Needleman
A.
,
1988
, “
Material Rate-Dependence and Mesh Sensitivity in Localization Problems
,”
Comp. Meth. Appl. Mech. Eng.
, Vol.
67
, pp.
69
86
.
33.
Nilsson, C., 1994, “On Nonlocal Plasticity, Localization and Softening, “Ph.D. thesis, Department of Structural Mechanics, Lund University of Technology, Sweden.
34.
Ortiz
M.
,
Leroy
Y.
, and
Needleman
A.
,
1987
, “
A Finite Element Method for Localized Failure Analysis
,”
Comput. Meths. Appl. Mech. Engng.
, Vol.
61
, pp.
189
214
.
35.
Pietruszak
S. T.
, and
Mro´z
Z.
,
1981
, “
Finite Element Analysis of Deformation of Strain Softening Materials
,”
Int. J. Num. Meths. Engng.
, Vol.
17
, pp.
327
334
.
36.
Pijaudier-Cabot
G.
, and
Bazˇant
Z. P.
,
1987
, “
Nonlocal Damage Theory
,”
J. Eng. Mech. ASCE
, Vol.
113
, pp.
1512
1533
.
37.
Polizzotto
C.
, and
Borino
G.
,
1998
, “
A Thermodynamics-Based Formulation of Gradient-Dependent Plasticity
,”
Eur. J. Mech. A/Solids
, Vol.
17
, pp.
741
761
.
38.
Polizzotto
C.
,
Borino
G.
, and
Fuschi
P.
,
1998
, “
A Thermodynamic Consistent Formulation of Nonlocal and Gradient Plasticity
,”
Mech. Res. Com.
, Vol.
25
, No.
1
, pp.
75
82
.
39.
Raniecki
B.
, and
Bruhns
O. T.
,
1981
, “
Bounds to Bifurcation Stresses in Solids With Non-Associated Plastic Flow Laws at Finite Strain
,”
J. Mech. Phys. Solids
. Vol.
29
, pp.
153
172
.
40.
Rudnicki
J. W.
, and
Rice
J. R.
,
1975
, “
Conditions for the Localization of Dilatant Materials
,”
J. Mech. Phys. Solids
, Vol.
23
, pp.
371
394
.
41.
Simo
J. C.
,
1988
, “
A Framework for Finite Strain Elastoplasticity Based on Maximum Plastic Dissipation and the Multiplicative Decomposition: Part I. Continuum Formulation
,”
Comput. Meths. Appl. Mech. Engng.
, Vol.
66
, pp.
199
219
.
42.
Simo
J. C.
, and
Ju
J. W.
,
1987
, “
Stress and Strain Based Continuum Damage Models—I. Formulation
,”
Int. J. Solids Struct.
, Vol.
23
, pp.
821
840
.
43.
Stro¨mberg
L.
, and
Ristinmaa
M.
,
1996
, “
FE-Formulation of a Nonlocal Plasticity Theory
,”
Comp. Meth. Appl. Mech. Eng.
, Vol.
136
, pp.
127
144
.
44.
Valanis
K. C.
,
1996
, “
A Gradient Theory of Internal Variables
,”
Acta Mechanica
, Vol.
116
, pp.
1
14
.
This content is only available via PDF.
You do not currently have access to this content.