This paper deals with the one-dimensional static and dynamic analysis of thin-walled closed beams with general quadrilateral cross sections. The coupled deformations of distortion as well as torsion and warping are investigated in this work. A new approach to determine the functions describing section deformations is proposed. In particular, the present distortion function satisfies all the necessary continuity conditions unlike Vlasov's distortion function. Based on these section deformation functions, a one-dimensional theory dealing with the coupled deformations is presented. The actual numerical work is carried out using two-node C0 finite element formulation. The present one-dimensional results for some static and free-vibration problems are compared with the existing and the plate finite element results.

1.
Balch
C. D.
, and
Steele
C. R.
,
1987
, “
Asymptotic Solutions for Warping and Distortion of Thin-Walled Box Beams
,”
ASME JOURNAL OF APPLIED MECHANICS
, Vol.
54
, pp.
165
173
.
2.
Bazˇant
Z. P.
, and
Nimeiri
M. E.
,
1974
, “
Stiffness Method for Curved Box Girders at Initial Stress
,”
Journal of the Structural Division
, Vol.
100
, No.
ST10
, pp.
2071
2090
.
3.
Bishop
R. E. D.
,
Price
W. G.
, and
Cheng
Z. X.
,
1983
, “
On the Structural Dynamics of a Vlasov Beam
,”
Proceedings of the Royal Society of London
, Vol.
A388
, pp.
49
73
.
4.
Boswell
L. F.
, and
Li
Q.
,
1995
, “
Consideration of the Relationships Between Torsion, Distortion, and Warping of Thin-Walled Beams
,”
Thin-Walled Structures
, Vol.
21
, pp.
147
161
.
5.
Boswell
L. F.
, and
Zhang
S. H.
,
1983
, “
A Box Beam Finite Element for the Elastic Analysis of Thin-Walled Structures
,”
Thin-Walled Structures
, Vol.
1
, pp.
353
383
.
6.
Boswell
L. F.
, and
Zhang
S. H.
,
1984
, “
The Effect of Distortion in Thin-Walled Box-Spine Beams
,”
International Journal of Solids and Structures
, Vol.
20
, No.
9–10
, pp.
845
862
.
7.
Boswell
L. F.
, and
Zhang
S. H.
,
1985
, “
An Experimental Investigation of the Behavior of Thin-Walled Box Beams
,”
Thin-Walled Structures
, Vol.
3
, pp.
35
65
.
8.
Cheung
Y. K.
,
1969
, “
Folded Plate Structures by Finite Strip Method
,”
Journal of the Structural Division, Proceedings of ASCE
, Vol.
95
, No.
ST12
, pp.
2963
2979
.
9.
Friberg
P. O.
,
1985
, “
Beam Element Matrices Derived From Vlasov's Theory of Open Thin-Walled Elastic Beams
,”
International Journal for Numerical Methods in Engineering
, Vol.
21
, pp.
1205
1228
.
10.
Gere, J. M., 1954, “Torsional Vibrations of Beams of Thin-Walled Open Section,” ASME JOURNAL OF APPLIED MECHANICS, pp. 381–387.
11.
Gjelsvik, A., 1981, The Theory of Thin Walled Bars, John Wiley and Sons, New York.
12.
Jirousek
J.
,
Bougerguig
A.
, and
Saygun
A.
,
1979
, “
A Macro-Element Analysis of Prestressed Curved Box-Girder Bridges
,”
Computers & Structures
, Vol.
10
, pp.
467
482
.
13.
Kim
M. Y.
,
Chang
S. P.
, and
Kim
S. B.
,
1994
a, “
Spatial Stability and Free Vibration of Shear Flexible Thin-Walled Elastic Beams. I: Analytical Approach
,”
International Journal for Numerical Methods in Engineering
, Vol.
37
, pp.
4097
4115
.
14.
Kim
M. Y.
,
Chang
S. P.
, and
Kim
S. B.
,
1994
b, “
Spatial Stability and Free Vibration of Shear Flexible Thin-Walled Elastic Beams. II: Numerical Approach
,”
International Journal for Numerical Methods in Engineering
, Vol.
37
, pp.
4117
4140
.
15.
Kim, Y. Y., Yim, H. J., Kang, J. H., and Kim, J. H., 1995, “Reconsideration of the Joint Modelling Technique: in a Box-Beam T-Joint, “SAE paper 951108, pp. 275–279.
16.
Kim
Y. Y.
, and
Kim
J. H.
,
1999
, “
Thin-Walled Closed Box Beam Element for Static and Dynamic Analysis
,”
International Journal for Numerical Methods in Engineering
, Vol.
45
, pp.
473
490
.
17.
Kou
C. H.
,
Benzley
S. E.
,
Huang
J. Y.
, and
Firmage
D. A.
,
1992
, “
Free Vibration Analysis of Curved Thin-Walled Girder Bridges
,”
Journal of Structural Engineering
, Vol.
118
, No.
10
, pp.
2890
2910
.
18.
Krˇl´stek
V.
,
1970
, “
Tapered Box Girders of Deformable Cross Section
,”
Journal of the Structural Division, ASCE
, Vol.
96
, No.
ST8
, Proc. Paper 7489, pp.
1761
1793
.
19.
Laudiero
F.
, and
Savoia
M.
,
1991
, “
The Shear Strain Influence on the Dynamics of Thin-Walled Beams
,”
Thin-Walled Structures
, Vol.
11
, pp.
375
407
.
20.
Maisel, B. I., 1982, “Analysis of Concrete Box Beams Using Small-Computer Capacity, “Cement and Concrete Association, Development Report 5, London.
21.
Mikkola
M. J.
, and
Paavola
J.
,
1980
, “
Finite Element Analysis of Box Girders
,”
Journal of the Structural Division, ASCE
, Vol.
106
, No.
ST6
, pp.
1343
1357
.
22.
MSC/NASTRAN, 1989, User’s Manual, The McNeal Schwendler Corporation, Los Angeles.
23.
Paavola
J.
,
1992
, “
A Finite Element Technique for Thin-Walled Girders
,”
Computers & Structures
, Vol.
44
, No.
1–2
, pp.
159
175
.
24.
Razzaqpur
A. G.
, and
Li
H. G.
,
1991
a, “
Thin-Walled Multicell Box Girder Finite Element
,”
Journal of Structural Engineering, ASCE
, Vol.
117
, No.
10
, pp.
2953
2971
.
25.
Razzaqpur
A. G.
, and
Li
H. G.
,
1991
b, “
A Finite Element With Exact Shape Functions for Shear Lag Analysis in Multi-Cell Box-Girders
,”
Computers & Structures
, Vol.
39
, No.
1–2
, pp.
155
163
.
26.
Razzaqpur
A. G.
, and
Li
H. G.
,
1994
, “
Refined Analysis of Curved Thin-Walled Multicell Box Girders
,”
Computers & Structures
, Vol.
53
, No.
1
, pp.
131
142
.
27.
Vlasov, V. Z., 1961, Thin Walled Elastic Beams, Israel Program for Scientific Translations, Jerusalem.
28.
Washizu, K., 1982, Variational Methods in Elasticity and Plasticity, 3rd Ed., Pergamon Press, London.
29.
Zhang
Z.
, and
Chen
S.
,
1990
, “
Dynamic Finite-Element Method of Thin-Walled Beams
,”
AIAA Journal
, Vol.
28
, No.
5
, pp.
910
914
.
30.
Zhang
S. H.
, and
Lyons
L. P. R.
,
1984
a, “
A Thin-Walled Box Beam Finite Element for Curved Bridge Analysis
,”
Computers & Structures
, Vol.
18
, No.
6
, pp.
1035
1046
.
31.
Zhang
S. H.
, and
Lyons
L. P. R.
,
1984
b, “
The Application of the Thin-Walled Box Beam Element to Multibox Bridge Analysis
,”
Computer & Structures
, Vol.
18
, No.
5
, pp.
795
802
.
This content is only available via PDF.
You do not currently have access to this content.