In this paper the four classical Hashin-Shtrikman variational principles, applied to the homogenization problem for periodic composites with a nonlinear hyperelastic constitutive behavior, are analyzed. It is proved that two of them are indeed minimum principles while the other two are saddle point principles. As a consequence, every approximation of the former ones provide bounds on the effective properties of composite bodies, while approximations of the latter ones may supply inconsistent bounds, as it is shown by two numerical examples. Nevertheless, the approximations of the saddle point principles are expected to provide better estimates than the approximations of the minimum principles.

1.
Aboudi, J., 1991, Mechanics of Composite Materials: A Unified Micromechanical Approach, Elsevier, Amsterdam.
2.
Christensen
 
R. M.
,
1990
, “
A Critical Evaluation for a Class of Micromechanics Models
,”
J. Mech Phys. Solids
, Vol.
38
, pp.
379
404
.
3.
Ekeland, I., and Temam, R., 1976, Convex Analysis and Variational Problems, North-Holland, Amsterdam, pp. 34–45, 165–185.
4.
Eshelby
 
J. D.
,
1957
, “
The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems
,”
Proc. R. Soe. London
, Vol.
A241
, pp.
376
396
.
5.
Hashin
 
Z.
, and
Shtrikman
 
S.
,
1962
a, “
On Some Variational Principles in Anisotropic and Nonhomogeneous Elasticity
,”
J. Mech. Phys. Solids
, Vol.
10
, pp.
335
342
.
6.
Hashin
 
Z.
, and
Shtrikman
 
S.
,
1962
b, “
A Variational Approach to the Theory of the Elastic Behavior of Multiphase Materials
,”
J. Mech. Phys. Solids
, Vol.
11
, pp.
127
140
.
7.
Iwaknma
 
T.
, and
Nemat-Nasser
 
S.
,
1983
, “
Composites With Periodic Microstructure
,”
Comput. Structures
, Vol.
16
, pp.
13
19
.
8.
Luciano
 
R.
, and
Barbero
 
E.
,
1994
, “
Formulas for the Stiffness of Composites With Periodic Microstructure
,”
Int. J. Solids Struct.
, Vol.
31
, pp.
2933
2944
.
9.
Milton
 
W.
, and
Kohn
 
R. V.
,
1988
, “
Variational Bounds on the Effective Moduli of Anisotropic Composites
,”
J. Mech. Phys. Solids
, Vol.
36
, pp.
597
629
.
10.
Mulinec
 
H.
, and
Suquet
 
P.
,
1994
, “
A Fast Numerical Method for Computing the Linear and Nonlinear Mechanical Properties of Composites
,”
C. R. Acad. Sci. Paris II
, Vol.
318
, pp.
1417
1423
.
11.
Mura, T., 1987, Micromechanics of Defects in Solids, Martinus Nijhoff, Dordrecht.
12.
Nemat-Nasser
 
S.
,
Yu
 
N.
, and
Hori
 
H.
,
1993
, “
Bounds and Estimates of Overall Moduli of Composites With Periodic Microstructure
,”
Mech. Mater.
, Vol.
15
, pp.
163
181
.
13.
Panagiotopoulos, P. D., 1985, Inequality Problems in Mechanics and Applications, Birkha¨user, Boston, pp. 61–114.
14.
Ponte Castan˜da
 
P.
,
1991
, “
The Effective Mechanical Properties of Nonlinear Isotropic Composites
,”
J. Mech. Phys. Solids
, Vol.
39
, pp.
45
71
.
15.
Reuss
 
A.
,
1929
, “
Berechnung der Fliessgrenze von Mischkristallen auf Grund der Plastizita¨tsbedingung fu¨r Einkristalle
,”
Z Angew, Math. Mech.
, Vol.
9
, pp.
49
58
.
16.
Suquet
 
P.
,
1990
, “
A Simplified Method for the Prediction of Homogenized Elastic Properties of Composites With a Periodic Structure
,”
C. R. Acad. Sci. Paris II
, Vol.
311
, pp.
769
774
.
17.
Talbot
 
D. R. S.
, and
Willis
 
J. R.
,
1985
, “
Variational Principles for Inhomogeneous Nonlinear Media
,”
IMA J. Appl. Math.
, Vol.
35
, pp.
39
54
.
18.
Voigt, W., 1928, Lehrbuch der Kristallphysik, Teubner, Leipzig.
19.
Walpole
 
L. J.
,
1966
, “
On Bounds for the Overall Elastic Moduli of Inhomogeneous Systems—I and II
,”
J. Mech. Phys. Solids
, Vol.
14
, pp.
151
162
.
20.
Walpole, L. J., 1981, “Elastic Behavior of Composite Materials: Theoretical Foundations,” Advances in Applied Mechanics, Vol. 21, C. S. Yih, ed, Academic Press, New York, pp. 169–242.
21.
Willis, J. R., 1981, “Variational and Related Methods for the Overall Properties of Composites,” Advances in Applied Mechanics, Vol. 21, C. S. Yih, ed., Academic Press, New York, pp. 1–78.
22.
Willis
 
J. R.
,
1989
, “
The Structure of Overall Constitutive Relations for a Class of Nonlinear Composites
,”
IMA J. Appl. Math.
, Vol.
43
, pp.
231
242
.
23.
Willis
 
J. R.
,
1991
, “
On Methods for Bounding the Overall Properties of Nonlinear Composites
,”
ASME JOURNAL OF APPLIED MECHANICS
, Vol.
39
, pp.
73
86
.
This content is only available via PDF.
You do not currently have access to this content.