Crack growth in a homogeneous elastic solid under impact shear loading conditions is analyzed numerically, with the crack constrained to grow along a weak plane directly ahead of the initial crack tip. The configuration analyzed is a plane-strain model of that used in the experiments of Rosakis et al. (1999). A cohesive surface constitutive relation is specified along the weak plane that relates the tractions and displacement jumps across it and that allows for the creation of new free surface. The resistance to crack initiation and the crack speed history are predicted without invoking any additional failure criterion. The effect of cohesive strength and impact pulse time on the response is explored. In a certain parameter regime, the calculations reproduce, at least qualitatively, the type of crack speed histories seen in the experiments. For other parameter values, an abrupt transition from crack growth at the Rayleigh wave speed to a value above 2 times the shear wave speed is seen. This transition involves microcrack nucleation ahead of the main crack. At intersonic crack speeds, shock-like gradients in the near-tip stress field are found as seen in the experiments.

1.
Abraham, F. F, and Gao, H., 1999, “How Fast Can Cracks Propagate?” submitted for publication.
2.
Andrews
D. J.
,
1976
, “
Rupture Velocity of Plane Strain Shear Cracks
,”
J. Geophys. Res.
, Vol.
81
, pp.
5679
5687
.
3.
Archuleta
R. J.
,
1982
, “
Analysis of Near-Source Static and Dynamic Measurements From the 1979 Imperial Valley Earthquake
, ”
Bull. Seismological Soc. Am.
, Vol.
72
, pp.
1927
1956
.
4.
Belytschko
T.
,
Chiapetta
R. L.
, and
Bartel
H. D.
,
1976
, “
Efficient Large Scale Non-linear Transient Analysis by Finite Elements
,”
Int. J. Numer. Meths. Engr.
, Vol.
10
, pp.
579
596
.
5.
Broberg
K. B.
,
1989
, “
The Near-Tip Field at High Crack Velocities
,”
Int. J. Fract.
, Vol.
39
, pp.
1
13
.
6.
Broberg
K. B.
,
1994
, “
Intersonic Bilateral Slip
,”
Geophys. J. Int.
, Vol.
119
, pp.
706
714
.
7.
Burridge
R.
,
Conn
G.
, and
Freund
L. B.
,
1979
, “
The Stability of a Rapid Mode II Shear Crack With Finite Cohesive Traction
,”
J. Geophys. Res.
, Vol.
85
, pp.
2210
2222
.
8.
Freund, L. B., 1998, Dynamic Fracture Mechanics, Cambridge University Press, Cambridge, UK.
9.
Johnson
E.
,
1990
, “
On the Initiation of Unidirectional Slip
,”
Geophys. J. Int.
, Vol.
101
, pp.
125
132
.
10.
Krieg
R. O.
, and
Key
S. W.
,
1973
, “
Transient Shell Response by Numerical Time Integration
,”
Int. J. Numer. Meths. Engrg.
, Vol.
7
, pp.
273
286
.
11.
Lambros
J.
, and
Rosakis
A. J.
,
1995
c, “
Shear Dominated Transonic interfacial Crack Growth in a Bimaterial—I. Experimental Observations
,”
J. Mech. Phys. Solids
, Vol.
43
, pp.
169
188
.
12.
Liu
C.
,
Huang
Y.
, and
Rosakis
A. J.
,
1995
c, “
Shear Dominated Transonic interfacial Crack Growth in a Bimaterial—II. Asymptotic Fields and Favorable Velocity Regimes
,”
J. Mech. Phys. Solids
, Vol.
43
, pp.
189
206
.
13.
Liu
C.
,
Lambros
J.
, and
Rosakis
A.
,
1993
, “
Highly Transient Elasto-Dynamic Crack Growth in a Bimaterial Interface: Higher Order Asymptotic Analysis and Optical Experiment
,”
J. Mech. Phys. Solids
, Vol.
41
, pp.
1887
1954
.
14.
Needleman
A.
,
1987
, “
A Continuum Model for Void Nucleatign by Inclusion Debonding
,”
ASME JOURNAL OF APPLIED MECHANICS
, Vol.
54
, pp.
525
531
.
15.
Needleman
A.
, and
Rosakis
A. J.
,
1999
, “
The Effect of Bond Strength and Loading Rate on the Conditions Governing the Attainment of lntersonic Crack Growth Along Interfaces
,”
J. Mech. Phys. Solids
, Vol.
47
, pp.
2411
2449
.
16.
Ravi-Chandar
K.
, and
Knauss
W. G.
,
1984
, “
An Experimental Investigation Into Dynamic Fracture: III. On Steady-State Crack Propagation and Crack Branching
,”
Int. J. Fract.
, Vol.
26
, pp.
141
154
.
17.
Rosakis
A. J.
,
Samudrala
O.
, and
Coker
D.
,
1999
, “
Cracks Faster Than the Shear Wave Speed
,”
Science
, Vol.
284
, pp.
1337
1340
.
18.
Sharon
E.
, and
Fineberg
J.
,
1996
, “
Microbranching Instability and the Dynamic Fracture of Brittle Materials
,”
Phys. Rev.
, Vol.
B54
, pp.
7128
7139
.
19.
Sharon
E.
, and
Fineberg
J.
,
1999
, “
Confirming the Continuum Theory of Dynamic Brittle Fracture for Fast Cracks
,”
Nature
, Vol.
397
, pp.
333
335
.
20.
Singh
R. P.
, and
Shukla
A.
,
1996
, “
Subsonic and lntersonic Crack Growth Along a Bimaterial Interface
,”
ASME JOURNAL OF APPLIED MECHANICS
, Vol.
63
, pp.
919
924
.
21.
Singh
R. P.
,
Lambros
J.
,
Shukla
A.
, and
Rosakis
A.
,
1997
, “
Investigation of the Mechanics of lntersonic Crack Propagation Along a Bimaterial Interface Using Coherent Gradient Sensing and Photoelasticity
,”
Proc. Roy. Soc. Lond.
, Vol.
A453
, pp.
2649
2667
.
22.
Xu
X.-P.
, and
Needleman
A.
,
1993
, “
Void Nucleation by Inclusion Debonding in a Crystal Matrix
,”
Modell. Simul. Mat. Sci. Engin.
, Vol.
1
, pp.
111
132
.
23.
Xu
X.-P.
, and
Needleman
A.
,
1994
, “
Numerical Simulations of Fast Crack Growth in Brittle Solids
,”
J. Mech. Phys. Solids
, Vol.
42
, pp.
1397
1434
.
24.
Xu
X.-P.
, and
Needleman
A.
,
1996
, “
Numerical Simulations of Dynamic Crack Growth Along an Interface
,”
Int. J. Fract.
, Vol.
74
, pp.
289
324
.
This content is only available via PDF.
You do not currently have access to this content.