We obtain explicit closed-form solutions for the half-space Green’s functions for a transversely isotropic piezoelectric solid. The boundary of the half-space is taken to be a plane normal to the unique material axis. The Green’s functions are obtained using a formulation where general solutions in transversely isotropic piezoelectricity are expressed in terms of two potential functions; one satisfying a weighted triharmonic equation and the other satisfying a weighted harmonic equation. By assuming a series solution for the potentials we derive explicit expressions for the Green’s functions.

1.
Bacon
D. J.
,
Barnett
D. M.
, and
Scattergood
R. O.
,
1978
, “
Anisotropic Continuum Theory of Lattice Defects
,”
Progress in Materials Science Series
, Vol.
23
, pp.
51
262
.
2.
Benveniste
Y.
,
1992
, “
The Determination of the Elastic and Electric Fields in a Piezoelectric Inhomogeneity
,”
Journal of Applied Physics
, Vol.
72
, pp.
1086
1095
.
3.
Chen
T.
,
1993
, “
Green’s Functions and the Non-Uniform Transformation Problem in a Piezoelectric Medium
,”
Mechanics Research Communications
, Vol.
20
, pp.
271
278
.
4.
Chen
T.
, and
Lin
F. Z.
,
1993
, “
Numerical Evaluation of Derivatives of the Anisotropic Piezoelectric Green’s Functions
,”
Mechanics Research Communications
, Vol.
20
, pp.
501
506
.
5.
Deeg, W. F., 1980, “The Analysis of Dislocation, Crack, and Inclusion Problems in Piezoelectric Solids,” Ph.D. dissertation, Stanford University, Stanford, CA.
6.
Ding
H. J.
,
Chenbuo
, and
Liangjian
,
1996
, “
General Solutions for Coupled Equations for Piezoelectric Media
,”
Int. J. Solids Structures
, Vol.
33
, pp.
2283
2298
.
7.
Dunn
M. L.
,
1994
, “
Electroelastic Green’s Functions for Transversely Isotropic Piezoelectric Media and Their Application to the Solution of Inclusion and Inhomogeneity Problems
,”
International Journal of Engineering Science
, Vol.
32
, pp.
119
131
.
8.
Dunn
M. L.
, and
Wienecke
H. A.
,
1996
, “
Green’s Functions for Transversely Isotropic Piezoelectric Solids
,”
Int. J. Solids Structures
, Vol.
33
, pp.
4571
4581
.
9.
Dunn
M. L.
, and
Wienecke
H. A.
,
1996
b, “
Inclusions and Inhomogeneities in Transversely Isotropic Piezoelectric Solids
,”
Int. J. Solids Structures
, Vol.
34
, pp.
3571
3582
.
10.
Eshelby
J. D.
,
1957
, “
The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems
,”
Proceedings of the Royal Society of London
, Vol.
A241
, pp.
376
396
.
11.
Freedholm
I.
,
1900
, “
Sur Les Equations de L’Equilibre D’um Corps Solide Elastique
,”
Acta Mathematica
, Vol.
23
, pp.
1
42
.
12.
Hu
H. C.
,
1953
, “
On the Three-Dimensional Problems of the Theory of Elasticity of a Transversely Isotropic Body
,”
Sci. Sinica
, Vol.
2
, pp.
145
151
.
13.
Lee
J. S.
, and
Jiang
L. Z.
,
1994
, “
A Boundary Integral Formulation and 2D Fundamental Solution for Piezoelectric Media
,”
Mechanics Research Communications
, Vol.
21
, pp.
47
54
.
14.
Mindlin
R. D.
,
1936
, “
Force at a Point in the Interior of a Semi-Infinite Solid
,”
Physics
, Vol.
7
, pp.
195
202
.
15.
Mura, T., 1987, Micromechanics of Defects in Solids, 2nd Ed., Martinus Nijhoff. Dordrecht, The Netherlands.
16.
Nye, J. F., 1957, Physical Properties of Crystals, Oxford University Press, London, UK.
17.
Pan
Y. C.
, and
Chou
T. W.
,
1976
, “
Point Force Solution for an Infinite Transversely Isotropic Solid
,”
ASME JOURNAL OF APPLIED MECHANICS
, Vol.
43
, pp.
608
612
.
18.
Pan
Y. C.
, and
Chou
T. W.
,
1979
, “
Green’s Function Solutions for Semi-Infinite Transversely lsotropic Materials
,”
International Journal of Engineering Science
, Vol.
17
, pp.
545
551
.
19.
Sosa
H. A.
, and
Castro
M. A.
,
1994
, “
On Concentrated Loads at the Boundary of a Piezoelectric Half Plane
,”
J. Mech. Phys. Solids
, Vol.
42
, pp.
1105
1122
.
20.
Synge, J. L., 1957, The Hypercircle in Mathematical Physics, Cambridge University Press, London, UK.
21.
Thompson, W., Sir, (Lord Kelvin), 1882, “Note on the Integration of the Equations of Equilibrium of an Elastic Solid,” Mathematical and Physical Systems, Cambridge University Press, London, pp. 97–98.
22.
Walker
K. P.
,
1993
, “
Fourier Integral Representation of the Green Function for an Anisotropic Half-Space
,”
Proceedings of the Royal Society of London
, Vol.
A443
, pp.
367
389
.
23.
Wang
B.
,
1992
, “
Three-Dimensional Analysis of an Ellipsoidal Inclusion in a Piezoelectric Material
,”
Int. J. Solids Structures
, Vol.
29
, pp.
293
308
.
24.
Wang
Z.
, and
Zheng
B.
,
1995
, “
The General Solution of Three-Dimensional Problems in Piezoelectric Media
,”
Int. J. Solids Structures
, Vol.
32
, pp.
105
115
.
25.
Yu
H. Y.
,
Sanday
S. C.
,
Rath
B. B.
, and
Chang
C. I.
,
1995
, “
Elastic Fields Due to Defects in Transversely lsotropic Bimaterials
,”
Proceedings of the Royal Society of London
, Vol.
A449
, pp.
1
30
.
This content is only available via PDF.
You do not currently have access to this content.