We obtain explicit closed-form solutions for the half-space Green’s functions for a transversely isotropic piezoelectric solid. The boundary of the half-space is taken to be a plane normal to the unique material axis. The Green’s functions are obtained using a formulation where general solutions in transversely isotropic piezoelectricity are expressed in terms of two potential functions; one satisfying a weighted triharmonic equation and the other satisfying a weighted harmonic equation. By assuming a series solution for the potentials we derive explicit expressions for the Green’s functions.
Issue Section:
Technical Papers
1.
Bacon
D. J.
Barnett
D. M.
Scattergood
R. O.
1978
, “Anisotropic Continuum Theory of Lattice Defects
,” Progress in Materials Science Series
, Vol. 23
, pp. 51
–262
.2.
Benveniste
Y.
1992
, “The Determination of the Elastic and Electric Fields in a Piezoelectric Inhomogeneity
,” Journal of Applied Physics
, Vol. 72
, pp. 1086
–1095
.3.
Chen
T.
1993
, “Green’s Functions and the Non-Uniform Transformation Problem in a Piezoelectric Medium
,” Mechanics Research Communications
, Vol. 20
, pp. 271
–278
.4.
Chen
T.
Lin
F. Z.
1993
, “Numerical Evaluation of Derivatives of the Anisotropic Piezoelectric Green’s Functions
,” Mechanics Research Communications
, Vol. 20
, pp. 501
–506
.5.
Deeg, W. F., 1980, “The Analysis of Dislocation, Crack, and Inclusion Problems in Piezoelectric Solids,” Ph.D. dissertation, Stanford University, Stanford, CA.
6.
Ding
H. J.
Chenbuo
Liangjian
1996
, “General Solutions for Coupled Equations for Piezoelectric Media
,” Int. J. Solids Structures
, Vol. 33
, pp. 2283
–2298
.7.
Dunn
M. L.
1994
, “Electroelastic Green’s Functions for Transversely Isotropic Piezoelectric Media and Their Application to the Solution of Inclusion and Inhomogeneity Problems
,” International Journal of Engineering Science
, Vol. 32
, pp. 119
–131
.8.
Dunn
M. L.
Wienecke
H. A.
1996
, “Green’s Functions for Transversely Isotropic Piezoelectric Solids
,” Int. J. Solids Structures
, Vol. 33
, pp. 4571
–4581
.9.
Dunn
M. L.
Wienecke
H. A.
1996
b, “Inclusions and Inhomogeneities in Transversely Isotropic Piezoelectric Solids
,” Int. J. Solids Structures
, Vol. 34
, pp. 3571
–3582
.10.
Eshelby
J. D.
1957
, “The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems
,” Proceedings of the Royal Society of London
, Vol. A241
, pp. 376
–396
.11.
Freedholm
I.
1900
, “Sur Les Equations de L’Equilibre D’um Corps Solide Elastique
,” Acta Mathematica
, Vol. 23
, pp. 1
–42
.12.
Hu
H. C.
1953
, “On the Three-Dimensional Problems of the Theory of Elasticity of a Transversely Isotropic Body
,” Sci. Sinica
, Vol. 2
, pp. 145
–151
.13.
Lee
J. S.
Jiang
L. Z.
1994
, “A Boundary Integral Formulation and 2D Fundamental Solution for Piezoelectric Media
,” Mechanics Research Communications
, Vol. 21
, pp. 47
–54
.14.
Mindlin
R. D.
1936
, “Force at a Point in the Interior of a Semi-Infinite Solid
,” Physics
, Vol. 7
, pp. 195
–202
.15.
Mura, T., 1987, Micromechanics of Defects in Solids, 2nd Ed., Martinus Nijhoff. Dordrecht, The Netherlands.
16.
Nye, J. F., 1957, Physical Properties of Crystals, Oxford University Press, London, UK.
17.
Pan
Y. C.
Chou
T. W.
1976
, “Point Force Solution for an Infinite Transversely Isotropic Solid
,” ASME JOURNAL OF APPLIED MECHANICS
, Vol. 43
, pp. 608
–612
.18.
Pan
Y. C.
Chou
T. W.
1979
, “Green’s Function Solutions for Semi-Infinite Transversely lsotropic Materials
,” International Journal of Engineering Science
, Vol. 17
, pp. 545
–551
.19.
Sosa
H. A.
Castro
M. A.
1994
, “On Concentrated Loads at the Boundary of a Piezoelectric Half Plane
,” J. Mech. Phys. Solids
, Vol. 42
, pp. 1105
–1122
.20.
Synge, J. L., 1957, The Hypercircle in Mathematical Physics, Cambridge University Press, London, UK.
21.
Thompson, W., Sir, (Lord Kelvin), 1882, “Note on the Integration of the Equations of Equilibrium of an Elastic Solid,” Mathematical and Physical Systems, Cambridge University Press, London, pp. 97–98.
22.
Walker
K. P.
1993
, “Fourier Integral Representation of the Green Function for an Anisotropic Half-Space
,” Proceedings of the Royal Society of London
, Vol. A443
, pp. 367
–389
.23.
Wang
B.
1992
, “Three-Dimensional Analysis of an Ellipsoidal Inclusion in a Piezoelectric Material
,” Int. J. Solids Structures
, Vol. 29
, pp. 293
–308
.24.
Wang
Z.
Zheng
B.
1995
, “The General Solution of Three-Dimensional Problems in Piezoelectric Media
,” Int. J. Solids Structures
, Vol. 32
, pp. 105
–115
.25.
Yu
H. Y.
Sanday
S. C.
Rath
B. B.
Chang
C. I.
1995
, “Elastic Fields Due to Defects in Transversely lsotropic Bimaterials
,” Proceedings of the Royal Society of London
, Vol. A449
, pp. 1
–30
.
This content is only available via PDF.
Copyright © 1999
by The American Society of Mechanical Engineers
You do not currently have access to this content.