The objective of this study is to formulate a simple, rational model for estimates of the penetration depth of rigid long rods through materials susceptible to microcracking. The proposed is based on the target resistance estimated using the particle dynamic simulations. All material parameters of the model can be identified and measured in laboratory. The accuracy of this simple model is found to be satisfactory.
Issue Section:
Technical Papers
1.
Alekseevskii
V. P.
1966
, “Penetration of a Rod into Target at High Velocity
,” Combus. Explos. Shock Waves
, Vol. 2
, pp. 63
–66
.2.
Anderson, C. E., Walker, J. D., and Hauver, G. E., 1991, “Target Resistance for Long-Rod Penetration into Semiinfinite Targets,” Computational Impact Mechanics, W. K. Kim, T. Belytshko, and T. Aizawa, eds., Elme Press.
3.
Bishop
R. F.
Hill
R.
Mott
N. F.
1945
, “The Theory of Indentation and Hardness Tests
,” The Proc. of the Phys Soc.
, Vol. 57
, Part 3, pp. 147
–159
.4.
Curran
D. R.
Seaman
L.
Cooper
T.
Shockey
D. A.
1993
, “Micromechanical Model for Comminution and Granular Flow of Brittle Material Under High Strain Rate Application to Penetration of Ceramic Targets
,” Int. J. Impact Engng.
, Vol. 13
, pp. 53
–83
.5.
Deitz
D.
1995
, “Impact Codes for the Virtual Laboratory
,” Mechanical Engn.
, Vol. 117
, No. 5
, pp. 66
–70
.6.
Forrestal
M. J.
Frew
D. J.
Hanchak
S. J.
Brar
N. S.
1996
, “Penetration of Grout and Concrete Targets With Ogive-Nosed Steel Projectiles
,” Int. J. Impact Engng.
, Vol. 18
, pp. 465
–476
.7.
Forrestal
M. J.
Longcope
D. B.
1990
, “Target Strength of Ceramic Materials for High-Velocity Penetration
,” J. Appl. Phys.
, Vol. 67
, pp. 3669
–3672
.8.
Forrestal
M. J.
Luk
V. K.
1988
, “Dynamic Spherical Cavity-Expansion in a Compressible Elastic-Plastic Solid
,” ASME JOURNAL OF APPLIED MECHANICS
, Vol. 55
, pp. 755
–760
.9.
Forrestal
M. J.
Okajima
K.
Luk
V. K.
1988
, “Penetration of 6061–T651 Aluminum Targets With Rigid Long Rods
,” ASME JOURNAL OF APPLIED MECHANICS
, Vol. 55
, pp. 755
–760
.10.
Forrestal
M. J.
Tzou
D. Y.
1997
, “A Spherical Cavity-expansion Penetration Model for Concrete Targets
,” Int. J. Solids Structures
, Vol. 34
, pp. 4127
–4146
.11.
Frew, D. J., Forrestal, M. J., Hanchak, S. J., and Green, M. L., 1997, “Penetration into Limestone Targets with Ogive-nose Steele Projectiles,” Proc. 14th Army Symp. on Solid Mechanics, K. R. Iyer and S.-c. Chou, eds., Battelle Press, Columbus, OH, pp. 121–128.
12.
Green, M. L., 1992, Laboratory Tests on Salem Limestone, Geomech. Div., Struct. Lab., U.S. Army Waterways Exp. Station, Vicksburg, MS.
13.
Hauver, G. E., Netherwood, P. H., Benck, R. F., Gooch, W. A., Perciballi, W. J., and Burkins, M. S., 1992, “Variation of Target Resistance During Longrod Penetration into Ceramics,” 13th Int. Symp. on Ballistics, Stockholm, Sweden, preprint.
14.
Hauver, G. E., Netherwood, P. H., Benck, R. F., and Melani, A., 1991, “Penetration of Shaped-Charge Jets into Glass and Crystalline Quartz,” Tech. Rep. BRL-TR-3273, Aberdeen Proving Ground, MD.
15.
Holian
B. L.
Voter
A. F.
Ravelo
R.
1995
, “Thermostated Molecular Dynamics: How to Avoid the tada Demon Hidden in Nose-Hoover Dynamics
,” Phys. Rev.
, Vol. E52
, pp. 2338
–2347
.16.
Johnson
G. R.
Cook
W. H.
1985
, “Fracture Characteristic of Three Metals Subjected to Various Strains, Strain Rates, Temperatures and Pressures
,” Eng. Fract. Mech.
, Vol. 21
, pp. 31
–48
.17.
Kachanov, L. M., 1971, Foundation of the Theory of Plasticity, North-Holland, Amsterdam.
18.
Krajcinovic, D., 1996, Damage Mechanics (North-Holland Series on Applied Mathematics and Mechanics, Vol. 41), Elsevier, Amsterdam.
19.
Krajcinovic
D.
Mastilovic
S.
1999
, “Statistical Models of Brittle Deformation: Part I—Introduction
,” Int. J. of Plasticity
, Vol. 15
, pp. 401
–426
.20.
Krajcinovic
D.
Mastilovic
S.
Vujosevic
M.
1998
, “Brittle to Quasibrittle Transition
,” Meccanica
, Vol. 33
, pp. 363
–379
.21.
Kromm
A.
1948
, “Zur Ausbreiting von Stosswellen in Kerislochscheiben
,” Z. Angew. Math. Mech.
, Vol. 28
, No. 10
, pp. 297
–303
.22.
Kromm
A.
1948
, “Zur Ausbreiting yon Stosswellen in Kerislochscheiben
,” Z. Angew. Math. Mech.
, Vol. 28
, No. 4
, pp. 104
–114
.23.
Mastilovic
S.
Krajcinovic
D.
1999
a, “High Velocity Expansion of a Cavity Within a Brittle Material
,” J. Mech. Phys. Solids
, Vol. 47
, pp. 577
–610
.24.
Mastilovic
S.
Krajcinovic
D.
1999
b, “Statistical Models of Brittle Deformation: Part II—Simulations
,” Int. J. of Plasticity
, Vol. 15
, pp. 427
–456
.25.
Nicholas, T., and Bless, S. J., 1985, “High Strain Rate Testing,” Mechanical Testing, Metals Handbook, Vol. 8, Am. Soc. Metals, Metal Park, pp. 208–214.
26.
Ortiz
M.
1996
, “Computational Micromechanics
,” Comput. Mechanics
, Vol. 18
, pp. 321
–339
.27.
Pidsley
P. H.
1984
, “A Numerical Study of Long Rod Impact onto a Large Target
,” J. Mech. Phys. Solids
, Vol. 32
, pp. 315
–333
.28.
Raftenberg, M. N., 1992, “Modeling RHA Plate Performation by a Shaped Charge Jet,” Tech. Rep. BRL-TR-3363, Aberdeed Proving Ground, MD.
29.
Shockey
D. A.
Marchand
A. H.
Skaggs
S. R.
Cort
G. E.
Burkett
M. W.
Parker
R.
1990
, “Failure Phenomenology of Confined Ceramic Targets and Impacting Rods
,” Int. J. Impact Engng.
, Vol. 9
, pp. 263
–275
.30.
Strassburger, E., and Senf, H., 1995, “Experimental Investigation of Wave and Fracture Phenomena in Impacted Ceramics and Glasses,” Report to U.S. Army Research Lab., Aberdeen, MD.
31.
Tadmor
E. B.
Ortiz
M.
Phillips
R.
1996
, “Quasicontinuum Analysis of Defects in Solids
,” Phil. Mag.
, Vol. A73
, pp. 1529
–1563
.32.
Tadmor
E. B.
Phillips
R.
Ortiz
M.
1996
a, “Mixed Atomistic and Continuum Models of Deformation in Solids
,” Langmuir
, Vol. 12
, pp. 4529
–4541
.33.
Tate
A.
1967
, “A Theory of the Deceleration of Long Rods After Impact
,” J. Mech. Phys. Solids
, Vol. 15
, pp. 387
–399
.34.
Tate
A.
1969
, “Further Results in the Theory of Long Rod Penetration
,” J. Mech. Phys. Solids
, Vol. 17
, pp. 141E.B
141E.B
.
This content is only available via PDF.
Copyright © 1999
by The American Society of Mechanical Engineers
You do not currently have access to this content.