Hydrated biological soft tissue consists of a porous extracellular matrix (ECM) and an interstitial fluid. The poroelastic theory (Biot, 1962), which was originally developed for soil mechanics, has been widely used for mathematical modeling of such hydrated biological tissue. This theory assumes that the ECM is incompressible and purely elastic, and that the interstitial fluid is incompressible and inviscid. The overall viscoelasticity of the tissue is expressed as a result of the frictional interaction between the elastic porous matrix and the interstitial fluid. The poroelastic theory, also known as the biphasic theory (Mow et al., 1980) in the biomechanics field, has served well over the past 20 years as an excellent modeling tool for the interstitial fluid flow-dependent viscoelastic response of hydrated soft tissue. It has been demonstrated that hydrated soft tissue also possesses a significant intrinsic viscoelasticity, independent of the interstitial fluid flow. The biphasic poroviscoelastic (BPVE) theory, which was first introduced by Mak (1986a and 1986b), incorporates a viscoelastic relaxation function into the effective solid stress of the poroelastic theory thus accounting for both intrinsic fluid flow-independent and fluid flow-dependent viscoelasticity. The objective of the present study is to investigate the biphasic poroviscoelastic characteristics of hydrated soft tissue, with an emphasis on the relative contribution of fluid flow-dependent and fluid flow-independent viscoelasticity to the overall viscoelastic behavior of soft tissues.

1.
Armstrong
CG
Lai
WM
Mow
VC
1984
An Analysis of the Unconfined Compression of Articular Cartilage
ASME Journal of Biomechanical Engineering
, vol. 
66
 
2
(pg. 
165
-
173
)
2.
Athanasiou
KA
Rosenwasser
MP
Buckwalter
JA
Malinin
TI
Mow
VC
1991
Interspecies comparisons of in situ intrinsic mechanical properties of distal femoral cartilage
J. Orthop. Res
, vol. 
66
 
2
(pg. 
330
-
340
)
3.
Basser
PJ
1992
Interstitial pressure, volume, and flow during infusion into brain tissue
Microvascular Res
, vol. 
66
 
2
(pg. 
143
-
165
)
4.
Biot
MA
1962
Mechanics of deformation and acoustic propagation in porous media
J. Appl. Phys
, vol. 
66
 
2
(pg. 
1482
-
1498
)
5.
Brown
TD
Singerman
RJ
1986
Experimental determination of the linear biphasic constitutive coefficients of human fetal proximal femoral chondro-epiphysis
J. Biomech
, vol. 
66
 
2
(pg. 
597
-
605
)
6.
Buckwalter
JA
Hunziker
E
Rosenberg
L
Coutts
R
Adams
M
Eyre
D
1988
Articular cartilage: Composition and Structure
Injury and repair of the musculoskeletal soft tissues
Woo
SL-Y
Buckwalter
JAs
American Academy of Orthopaedic Surgeons
(pg. 
405
-
425
)
7.
Buckwalter
JA
Smith
KC
Kazarien
LE
Rosenberg
LC
Ungar
R
1989
Articular cartilage and intervertebral disc proteoglycans differ in structure: An electron microscopic study
J. Orthop. Res
, vol. 
66
 
2
(pg. 
146
-
151
)
8.
Bursac
PM
Obitz
TW
Eisenberg
SR
Stamenovic
D
1997
Confined and unconfined stress relaxation of cartilage: A transversely isotropic analysis
Advances in Bioeng
Sun River, OR
(pg. 
157
-
158
)
9.
Fung
YC
1972
Stress-strain-history relations of soft tissues in simple elongation
Biomechanics: Its foundations and objectives
Fung
YC
Perrone
N
Anliker
M
Prentice-Hall
Englewood Cliffs, NJ
(pg. 
181
-
208
)
10.
Fung
YC
1994
Biomechanics: Mechanical Properties of Living Tissues
Springer-Verlag
New York
11.
Hayes
WC
Bodine
AJ
1978
Flow-independent viscoelastic properties of articular cartilage matrix
J. Biomech.
, vol. 
66
 
2
(pg. 
407
-
419
)
12.
Hayes
WC
Mockros
LF
1971
Viscoelastic properties of human articular cartilage
J. Appl. Physiol
, vol. 
66
 
2
(pg. 
562
-
568
)
13.
Kwan
MK
Lin
TH-C
Woo
SL-Y
1993
On the viscoelastic properties of the anteromedial bundle of the anterior cruciate ligament
J. Biomech.
, vol. 
66
 
2
(pg. 
447
-
452
)
14.
Laible
JP
Pilaster
D
Simon
BR
Krag
MH
Pope
M
Haugh
LD
1994
A Dynamic Material Parameter Estimation Procedure for Soft Tissue Using a Poroelastic Finite Element Model
ASME Journal of Biomechanical Engineering
, vol. 
66
 
2
(pg. 
19
-
29
)
15.
Mak
AF
1986a
The Apparent Viscoelastic Behavior of Articular Cartilage: The Contributions From the Intrinsic Matrix Viscoelasticity and Interstitial Fluid Flows
ASME Journal of Biomechanical Engineering
, vol. 
66
 
2
(pg. 
123
-
130
)
16.
Mak
AF
1986b
Unconfined compression of hydrated viscoelastic tissues: A biphasic poroviscoelastic analysis
Biorheology
, vol. 
66
 
2
(pg. 
371
-
383
)
17.
Mow
VC
Ateshian
GA
Spilker
RL
1993
Biomechanics of Diarthrodial Joints: A Review of Twenty Years of Progress
ASME Journal of Biomechanical Engineering
, vol. 
66
 
2
(pg. 
460
-
467
)
18.
Mow
VC
Gibbs
MC
Lai
WM
Zhu
WB
Athanasiou
KA
1989
Biphasic indentation of articular cartilage: II. A numerical algorithm and an experimental study
J. Biomech
, vol. 
66
 
2
(pg. 
853
-
861
)
19.
Mow
VC
Kuei
SC
Lai
WM
Armstrong
CG
1980
Biphasic Creep and Stress Relaxation of Articular Cartilage in Compression: Theory and Experiments
ASME Journal of Biomechanical Engineering
, vol. 
66
 
2
(pg. 
73
-
83
)
20.
Mow
VC
Mak
AF
Lai
WM
Rosenberg
LC
Tang
LH
1984
Viscoelastic properties of proteoglycan subunits and aggregates in varying solution concentrations
J. Biomech.
, vol. 
66
 
2
(pg. 
325
-
338
)
21.
Myers
BS
McElhaney
JH
Doherty
BJ
1991
The viscoelastic responses of the human cervical spine in torsion: Experimental limitations of quasi-linear theory, and a method for reducing these effects
J. Biomech
, vol. 
66
 
2
(pg. 
811
-
817
)
22.
Nagtegaal
JC
Parks
DM
Rice
JR
1974
On numerically accurate finite element solutions in the fully plastic range
Comp. Meth. Appl. Mech. Eng
, vol. 
66
 
2
(pg. 
153
-
177
)
23.
Parsons
JR
Black
J
1977
The viscoelastic shear behavior of normal rabbit articular cartilage
J. Biomech
, vol. 
66
 
2
(pg. 
21
-
29
)
24.
Pitt Ford
TR
Sachs
JR
Grotberg
JB
Glucksberg
MR
1991
Perialveolar interstitial resistance and compliance in isolated rat lung
J. Appl. Physiol
, vol. 
66
 
2
(pg. 
2750
-
2756
)
25.
Simon
BR
Kaufmann
MV
McAfee
MA
Baldwin
AL
1993
Finite element models for arterial wall mechanics
J. Biomech. Engrg
, vol. 
66
 
2
(pg. 
489
-
496
)
26.
Soulhat
J
Buschmann
MD
Shirazi-Adl
A
1997
A nonhomogeneous composite model of articular cartilage: Development and validation in unconfined compression
Trans. 43rd ORS
San Francisco, CA
pg. 
822
 
27.
Spilker
RL
Suh
J-K
Mow
VC
1990
Effects of Friction on the Unconfined Compressive Response of Articular Cartilage: A Finite Element Analysis
ASME Journal of Biomechanical Engineering
, vol. 
66
 
2
(pg. 
138
-
146
)
28.
Spirt
AA
Mak
AF
Wassell
RP
1989
Nonlinear viscoelastic properties of articular cartilage in shear
J. Orthop. Res
, vol. 
66
 
2
(pg. 
43
-
49
)
29.
Suh
JK
Spilker
RL
Holmes
MH
1991
A penalty finite element analysis for nonlinear mechanics of biphasic hydrated soft tissue under large deformation
Int. J. Num. Meth. Eng
, vol. 
66
 
2
(pg. 
1411
-
1439
)
30.
Suh
J-K
Bai
S
1997
Biphasic poroviscoelastic behavior of articular cartilage in creep indentation test
Trans. 43rd ORS
San Francisco, CA
pg. 
823
 
31.
Suh
J-K
Bai
S
1998
Finite Element Formulation of Biphasic Poroviscoelastic Model for Articular Cartilage
ASME Journal of Biomechanical Engineering
, vol. 
66
 
2
(pg. 
195
-
201
)
32.
Tschoegl
NW
1989
The Phenomenological Theory of Linear Viscoelastic Behavior
Springer-Verlag
Berlin
33.
Viidik
A
1968
A Rheological Model for Uncalcified Parallel-Fibered Collagenous Tissues
ASME Journal of Biomechanical Engineering
, vol. 
66
 
2
(pg. 
3
-
11
)
34.
Yang
M
Taber
LA
Clark
EB
1994
A Nonlinear Poroelastic Model for the Trabecular Embryonic Heart
ASME Journal of Biomechanical Engineering
, vol. 
66
 
2
(pg. 
213
-
223
)
35.
Zhu
W
Mow
VC
1990
Viscometric properties of proteoglycan solutions at physiological concentration
Biomechanics of Diathrodial Joints
Mow
VC
Ratclifte
A
Woo
SL-Y
Springer-Verlag
New York
(pg. 
313
-
344
)
36.
Zhu
W
Mow
VC
Koob
TJ
Eyre
DR
1993
Viscoelastic shear properties of articular cartilage and the effects of glycosidase treatments
J. Orthop. Res
, vol. 
66
 
2
(pg. 
771
-
781
)
This content is only available via PDF.
You do not currently have access to this content.