The interaction dynamics of a cantilever linear beam coupled to a nonlinear pendulum, a prototype for linear/nonlinear coupled structures of infinite degrees-of-freedom, has been studied analytically and experimentally. The spatio-temporal characteristics of the dynamics is analyzed by using tools from geometric singular perturbation theory and proper orthogonal decompositions. Over a wide range of coupling between the linear beam and the nonlinear pendulum, the coupled dynamics is dominated by three proper orthogonal (PO) modes. The first two dominant PO modes stem from those characterizing the reduced slow free dynamics of the stiff/soft (weakly coupled) system. The third mode appears in all interactions and stems from the reduced fast free dynamics. The interaction creates periodic and quasi-periodic motions that reduce dramatically the forced resonant dynamics in the linear substructure. These regular motions are characterized by four PO modes. The irregular interaction dynamics consists of low-dimensional and high-dimensional chaotic motions characterized by three PO modes and six to seven PO modes, respectively. Experimental tests are also carried out and there is satisfactory agreement with theoretical predictions.

1.
Fenichel
 
N
1979
Geometric singular perturbation theory for ordinary differential equations
J. of Diff. Equat
, vol. 
66
 
2
(pg. 
53
-
98
)
2.
Boothby
 
WM
1985
An Introduction to Differential Manifolds and Riemanian Geometry
Academic Press
London
3.
Cusumano
 
JP
Sharkady
 
MT
Kimple
 
BW
1994
Experimental measurements of dimensionality and spatial coherence in the dynamics of a flexible-beam impact oscillator
Phil. Trans. R. Soc. Lond
, vol. 
66
 
2
(pg. 
421
-
438
)
4.
Cuvalci
 
O
Ertas
 
A
1996
Pendulum as Vibration Absorber for Flexible Structures: Experiments and Theory
Journal of Vibration and Acoustics
, vol. 
66
 
2
(pg. 
558
-
566
)
5.
Georgiou
 
IT
1993
Nonlinear dynamics and chaotic motions of a singularly perturbed nonlinear viscoelastic beam
Ph.D. dissertation
Purdue University
West Lafayette, IN
6.
Georgiou
 
IT
Bajaj
 
AK
Corless
 
M
1998a
Slow and fast invariant manifolds, and normal modes in a two-degree-of-freedom structural dynamical system with multiple equilibrium states
Int. J. of Non-Linear Mech
, vol. 
66
 
2
(pg. 
275
-
300
)
7.
Georgiou
 
IT
Corless
 
M
Bajaj
 
AK
1996a
Dynamics of nonlinear structures with multiple equilibria: A singular perturbation-invariant manifold approach
J. Appl. Math. Phys. (ZAMP)
 
to appear
8.
Georgiou
 
IT
Schwartz
 
IB
1999a
Dynamics of Large Scale Coupled Structural/Mechanical Systems: A Singular Perturbation/Proper Orthogonal Decomposition Approach
J. Appl. Math. (SIAM)
, vol. 
66
 
2
(pg. 
1178
-
1207
)
9.
Georgiou
 
IT
Schwartz
 
IB
1997a
Slaving the In-Plane Motions of a Nonlinear Plate to its Flexural Motions: An Invariant Manifold Approach
ASME JOURNAL OF APPLIED MECHANICS
, vol. 
66
 
2
(pg. 
175
-
182
)
10.
Georgiou
 
IT
Sansour
 
J
Sansour
 
C
Schwartz
 
IB
1997b
Nonlinear dynamics of geometrically exact in-plane rods: the finite element/proper orthogonal decomposition approach
Acta Mechanica
 
to appear
11.
Georgiou
 
IT
Schwartz
 
IB
1999b
The Slow Nonlinear Normal Mode and Stochasticity in the Dynamics of a Conservative Flexible Rod/Pendulum Configuration
Journal of Sound and Vibration
, vol. 
66
 
2
(pg. 
383
-
411
)
12.
Georgiou
 
IT
Schwartz
 
IB
Emaci
 
E
Vakakis
 
AF
1997c
Chaos and Hysteresis in Dynamics of Coupled Structures: Experiment and Theory
Proceedings of the Fourth Experimental Chaos Conference
Ding
 
M
Ditto
 
W
Pecora
 
L
Spano
 
M
Vohra
 
S
World Scientific
Singapore
13.
Georgiou
 
IT
Sansour
 
J
1998b
Analyzing the finite element dynamics of nonlinear in-plane rods by the method of proper orthogonal decomposition
Computational Mechanics, New Trends and Applications
Idelsohn
 
S
Onate
 
E
Dvorkin
 
E
CIMNE
Barcelona, Spain
14.
Jones
 
C
1995
Geometric singular perturbation theory in dynamical systems
 
(Springer Lecture Notes Math. 1609)
(pg. 
44
-
120
)
15.
Knobloch
 
H. W
Aulbach
 
B
1984
Singular perturbations and integral manifolds
J. Math. Phys. Sci.
, vol. 
66
 
2
(pg. 
415
-
423
)
16.
Nipp
 
K
1985
Invariant manifolds of singularly perturbed ordinary differential equations
J. Appl. Math. Phys. (ZAMP)
, vol. 
66
 
2
(pg. 
311
-
320
)
17.
Mira
 
C
1997
Some Historical Aspects of Nonlinear Dynamics-Possible Trends for the Future
J. Franklin Inst.
, vol. 
66
 
2
(pg. 
1075
-
1113
)
18.
Pontrjagin
 
LS
1957
Asymptotic behavior of solutions of differential equations when the higher derivatives contain a small parameter as a factor
Izv. Akad. Nauk (Ser. mat.)
, vol. 
66
 
2
(pg. 
605
-
621
(in Russian)
19.
Scheck
 
F
1990
Mechanics
Springer-Verlag
New York
20.
Tikhonov
 
AN
1952
Systems of differential equations containing a small parameter with higher order derivatives
Mat. Sbornik
, vol. 
66
 
2
(pg. 
575
-
584
(in Russian)
21.
Sirovich
 
L
1987
Turbulence and the Dynamics of Coherent Structures, Pt. I, Coherent Structures
Quart. Appl. Math.
, vol. 
66
 
2
(pg. 
561
-
571
)
22.
Schwartz
 
IB
Triandaf
 
I
1996
Chaos and intermittent bursting in a reaction-diffusion process
Chaos
, vol. 
66
 
2
(pg. 
229
-
237
)
23.
Schwartz
 
IB
Georgiou
 
IT
1998
Instant chaos and hysteresis in coupled linear-nonlinear oscillators
Physics Letters, A
, vol. 
66
 
2
(pg. 
307
-
312
)
24.
Wiggins
 
S
1990
Introduction to Applied Nonlinear Dynamical Systems and Chaos
Springer-Verlag
New York
This content is only available via PDF.
You do not currently have access to this content.