Analysis of a pendulum pivoted on a rotating shaft. The mass of the pendulum is free to move radially. The shaft is nearly horizontal.
Issue Section:
Brief Notes
Topics:
Pendulums
1.
Acheson
D. J.
1993
, “A Pendulum Theorem
,” Proc. R. Soc. Lond.
, Vol. A443
, pp. 239
–245
.2.
Acheson
D. J.
Mullin
T.
1993
, “Upside-Down Pendulums
,” Nature
, Vol. 366
, pp. 215
–216
.3.
Bogoliuboff, N. M., and Mitropolskiy, Yu. A., 1962, Asymptotic Methods in the Theory of Nonlinear Oscillations, Gordon and Breach, New York.
4.
Howe
M. S.
1974
, “The mean Square Stability of an Inverted Pendulum Subject to Random Parametric Excitation
,” Journal of Sound and Vibration
, Vol. 32
, No. 3
, pp. 407
–421
.5.
Levi
M.
1988
. “Stability of the Inverted Pendulum-A Topological Explanation
,” SIAM Review
, Vol. 30
, pp. 639
–644
.6.
Levi
M.
Weckesser
W.
1995
, “Stabilization of the Inverted Linearized Pendulum by High Frequency Vibrations
,” SIAM Review
, Vol. 37
, pp. 219
–223
.7.
Lowenstern
E. R.
1932
, “The Stabilizing Effect of Imposed Oscillations of High Frequency on a Dynamical System
,” Philosophical Magazine
, Vol. 13
, pp. 458
–486
.8.
Miles
J. W.
1962
, “Stability of Forced Oscillations of a Spherical Pendulum
,” Quarterly of Applied Mathematics
, Vol. 20
, No. 1
, pp. 21
–32
.9.
Mitchell
R.
1972
, “Stability of the Inverted Pendulum Subjected to Almost Periodic and Stochastic Base Motion—An Application of the Method of Averaging
,” International Journal of Non-Linear Mechanics
, Vol. 7
, pp. 101
–123
.10.
Phelps
F. M.
Hunter
J. H.
1965
, “An Analytical Solution of The Inverted Pendulum
,” American Journal of Physics
, Vol. 33
, pp. 285
–295
.11.
Ryland
G.
Meirovitch
L.
1977
, “Stability Boundaries of a Swinging Spring with Oscillatory Support
,” Journal of Sound and Vibration
, Vol. 51
, pp. 547
–560
.12.
Schmidt
B. A.
1980
, “Vibrated Pendulum with a Mass Free to Move Radially
,” ASME JOURNAL OF APPLIED MECHANICS
, Vol. 47
, pp. 428
–430
.13.
Schmidt
B. A.
1981
, “Pendulum with a Rotational Vibration
,” ASME JOURNAL OF APPLIED MECHANICS
, Vol. 48
, pp. 200
–203
.14.
Schmidt
B. A.
1983
, “The Radially Flexible Pendulum Subjected to a High Frequency Excitation
,” ASME JOURNAL OF APPLIED MECHANICS
, Vol. 50
, pp. 443
–448
.15.
Schmidt
B. A.
1990
, “The Rotationally Flexible Pendulum Subjected to a High Frequency Excitation
,” ASME JOURNAL OF APPLIED MECHANICS
, Vol. 57
, pp. 725
–730
.16.
Schmidt
B. A.
McDowell
D. G.
1992
, “Analysis of a Pendulum on a Rotating Arm
,” ASME JOURNAL OF APPLIED MECHANICS
, Vol. 59
, pp. 233
–234
.17.
Sethna, P. R., and Hemp, G. W., 1964, “Nonlinear Oscillation of a Gyroscopic Pendulum with an Oscillatory Point of Suspension,” Proc. Colloq. International du Centre National de la Reserche Scientifique, N-148, Les vibration force´es dans les systemes non-lineaires, pp. 375–392.
18.
Stephenson
A.
1908
, “On a New Type of Dynamical Stability
,” Manchester Memoirs
, Vol. 52
, pp. 1
–10
.
This content is only available via PDF.
Copyright © 1998
by The American Society of Mechanical Engineers
You do not currently have access to this content.