Analysis of a pendulum pivoted on a rotating shaft. The mass of the pendulum is free to move radially. The shaft is nearly horizontal.

1.
Acheson
D. J.
,
1993
, “
A Pendulum Theorem
,”
Proc. R. Soc. Lond.
, Vol.
A443
, pp.
239
245
.
2.
Acheson
D. J.
, and
Mullin
T.
,
1993
, “
Upside-Down Pendulums
,”
Nature
, Vol.
366
, pp.
215
216
.
3.
Bogoliuboff, N. M., and Mitropolskiy, Yu. A., 1962, Asymptotic Methods in the Theory of Nonlinear Oscillations, Gordon and Breach, New York.
4.
Howe
M. S.
,
1974
, “
The mean Square Stability of an Inverted Pendulum Subject to Random Parametric Excitation
,”
Journal of Sound and Vibration
, Vol.
32
, No.
3
, pp.
407
421
.
5.
Levi
M.
,
1988
. “
Stability of the Inverted Pendulum-A Topological Explanation
,”
SIAM Review
, Vol.
30
, pp.
639
644
.
6.
Levi
M.
, and
Weckesser
W.
,
1995
, “
Stabilization of the Inverted Linearized Pendulum by High Frequency Vibrations
,”
SIAM Review
, Vol.
37
, pp.
219
223
.
7.
Lowenstern
E. R.
,
1932
, “
The Stabilizing Effect of Imposed Oscillations of High Frequency on a Dynamical System
,”
Philosophical Magazine
, Vol.
13
, pp.
458
486
.
8.
Miles
J. W.
,
1962
, “
Stability of Forced Oscillations of a Spherical Pendulum
,”
Quarterly of Applied Mathematics
, Vol.
20
, No.
1
, pp.
21
32
.
9.
Mitchell
R.
,
1972
, “
Stability of the Inverted Pendulum Subjected to Almost Periodic and Stochastic Base Motion—An Application of the Method of Averaging
,”
International Journal of Non-Linear Mechanics
, Vol.
7
, pp.
101
123
.
10.
Phelps
F. M.
, and
Hunter
J. H.
,
1965
, “
An Analytical Solution of The Inverted Pendulum
,”
American Journal of Physics
, Vol.
33
, pp.
285
295
.
11.
Ryland
G.
, and
Meirovitch
L.
,
1977
, “
Stability Boundaries of a Swinging Spring with Oscillatory Support
,”
Journal of Sound and Vibration
, Vol.
51
, pp.
547
560
.
12.
Schmidt
B. A.
,
1980
, “
Vibrated Pendulum with a Mass Free to Move Radially
,”
ASME JOURNAL OF APPLIED MECHANICS
, Vol.
47
, pp.
428
430
.
13.
Schmidt
B. A.
,
1981
, “
Pendulum with a Rotational Vibration
,”
ASME JOURNAL OF APPLIED MECHANICS
, Vol.
48
, pp.
200
203
.
14.
Schmidt
B. A.
,
1983
, “
The Radially Flexible Pendulum Subjected to a High Frequency Excitation
,”
ASME JOURNAL OF APPLIED MECHANICS
, Vol.
50
, pp.
443
448
.
15.
Schmidt
B. A.
,
1990
, “
The Rotationally Flexible Pendulum Subjected to a High Frequency Excitation
,”
ASME JOURNAL OF APPLIED MECHANICS
, Vol.
57
, pp.
725
730
.
16.
Schmidt
B. A.
, and
McDowell
D. G.
,
1992
, “
Analysis of a Pendulum on a Rotating Arm
,”
ASME JOURNAL OF APPLIED MECHANICS
, Vol.
59
, pp.
233
234
.
17.
Sethna, P. R., and Hemp, G. W., 1964, “Nonlinear Oscillation of a Gyroscopic Pendulum with an Oscillatory Point of Suspension,” Proc. Colloq. International du Centre National de la Reserche Scientifique, N-148, Les vibration force´es dans les systemes non-lineaires, pp. 375–392.
18.
Stephenson
A.
,
1908
, “
On a New Type of Dynamical Stability
,”
Manchester Memoirs
, Vol.
52
, pp.
1
10
.
This content is only available via PDF.
You do not currently have access to this content.