The variational principle developed by Gyarmati embodying the principles of non-equilibrium thermodynamics is employed to investigate the laminar boundary layer effect on wedge flows with suction and injection. The velocity function is assumed as a simple third-degree polynomial and the variational principle is formulated. The hydrodynamical boundary layer thickness is derived as the Euler-Lagrange equation of the variational principle. The velocity profiles and skin friction values were computed for various values of suction and injection parameter and wedge angle parameter. The comparison of the present solution with an available exact solution establishes the fact that the accuracy is remarkable.

1.
Emmons, H. W., and Leigh, D. C., 1954, ARC Report and Memo No. 157.
2.
Gyarmati, I., 1969, Ann. Phys., Vol. 23, pp. 353–378.
3.
Gyarmati, I., 1970, Non-equilibrium Thermodynamics, Field Theory and Variational Principles, Springer-Verlag, Berlin, p. 95.
4.
Iglisch, R., 1949, NACA Tech. Memo No. 1205.
5.
Kay, J. M., 1948, ARC Report and Memo No. 2628.
6.
Lew
H. G.
,
1955
,
Jour. Aero. Sci.
, Vol.
22
, pp.
589
597
.
7.
Nickel
K.
,
1962
,
Ing. Arch.
, Vol.
31
, pp.
85
100
.
8.
Onsager, L., 1931, Phys. Rev., Vol. 37, p. 405.
9.
Onsager, L., 1931, Phys. Rev., Vol. 38, p. 2265.
10.
Poisson-Quiton, p., 1956, ONERA Publication, Note Technique Vol. 37.
11.
Prandtl, L., 1904, Proc. III. Intern. Maths Congr., Heidelberg, pp. 484–491.
12.
Schrenk, O., 1941, NACA Tech. Mem. No. 974.
13.
Stark, A., 1974, Ann. Physik., Leipzig, Vol. 31, pp. 53–75.
14.
Wuest, W., 1955, Ing. Arch., Vol. 23, pp. 198–208.
This content is only available via PDF.
You do not currently have access to this content.