Using a Lyapunov-type approach, a simple sufficient stability condition for linear conservative gyroscopic systems with negative definite stiffness matrix is derived. The condition is nonspectral; it involves only the definiteness of certain combinations of the system’s coefficient matrices.

1.
Barkwell
L.
, and
Lancaster
P.
,
1992
, “
Overdamped and Gyroscopic Vibrating Systems
,”
ASME JOURNAL OF APPLIED MECHANICS
, Vol.
59
, pp.
176
181
.
2.
Bulatovic
R. M.
,
1997
, “
On Stability of Linear Potential Gyroscopic Systems in a Case When Potential Energy Possesses Maximum
,”
Prikl. Math. Mekh. (PMM)
, Vol.
61
, pp.
385
389
(in Russian).
3.
Chetayev, N. G., 1961, The Stability of Motion, Pergamon Press, New York.
4.
Hagedorn
P.
,
1975
, “
U¨ber die Instabilit a¨t konservativer Systeme mit gyroskopischen Kra¨ften
,”
Archive for Rational Mechanics and Analysis
, Vol.
58
, No.
1
, pp.
1
9
.
5.
Huseyin, K., 1978, Vibrations and Stability of Multiple Parameter Systems, Nordhoff International Publishing.
6.
Huseyin
K.
,
Hagedorn
P.
, and
Teschner
W.
,
1983
, “
On the Stability of Linear Conservative Gyroscopic Systems
,”
Journal of Applied Mathematics and Physics (ZAMP)
, Vol.
34
, pp.
807
815
.
7.
Inman
D. J.
,
1988
, “
A Sufficient Condition for the Stability of Conservative Gyroscopic Systems
,”
ASME JOURNAL OF APPLIED MECHANICS
, Vol.
55
, pp.
895
898
.
8.
Inman
D. J.
, and
Saggio
F.
,
1985
, “
Stability Analysis of Gyroscopic Systems by Matrix Methods
,”
AIAA Journal of Guidance, Control and Dynamics
, Vol.
8
, No.
1
, pp.
150
152
.
9.
Wu
Jinn-Wen
, and
Tsao
Tsu-Chin
,
1994
, “
A Sufficient Stability Condition for Linear Conservative Gyroscopic Systems
,”
ASME JOURNAL OF APPLIED MECHANICS
, Vol.
61
, pp.
715
717
.
10.
Lakhadanov
V. M.
,
1978
, “
On the Quadratic Integrals of Linear Autonomous Systems
,”
Prikl. Math. Mekh. (PMM)
, Vol.
42
, pp.
555
557
, (in Russian).
11.
Meirovitch, L., 1970, Methods of Analytical Dynamics, McGraw-Hill, New York.
12.
Pozharicki
G. K.
,
1956
, “
On the Instability of Motions of Conservative Systems
,”
Prikl. Math. Mekh. (PMM)
, Vol.
20
, pp.
429
433
, (in Russian).
13.
Seyranian
A.
,
Stoustrup
J.
, and
Kliem
W.
,
1995
, “
On Gyroscopic Stabilization
,”
Journal of Applied Mathematics and Physics (ZAMP)
, Vol.
46
, pp.
255
264
.
14.
Teschner, W., 1977, “Instabilita¨t bei nichtlinearen konservativen Systemen mit gyroskopischen Kra¨ften,” Ph.D. thesis, TH Darmstadt.
15.
Thomson, W., and Tait, G., 1879, A Treatise on Natural Philosophy, Vol. 1, Part 1, Cambridge University Press, Cambridge, UK.
16.
Walker
J.
,
1991
, “
Stability of Linear Conservative Gyroscopic Systems
,”
ASME JOURNAL OF APPLIED MECHANICS
, Vol.
58
, pp.
229
232
.
This content is only available via PDF.
You do not currently have access to this content.