Using a Lyapunov-type approach, a simple sufficient stability condition for linear conservative gyroscopic systems with negative definite stiffness matrix is derived. The condition is nonspectral; it involves only the definiteness of certain combinations of the system’s coefficient matrices.
Issue Section:
Brief Notes
1.
Barkwell
L.
Lancaster
P.
1992
, “Overdamped and Gyroscopic Vibrating Systems
,” ASME JOURNAL OF APPLIED MECHANICS
, Vol. 59
, pp. 176
–181
.2.
Bulatovic
R. M.
1997
, “On Stability of Linear Potential Gyroscopic Systems in a Case When Potential Energy Possesses Maximum
,” Prikl. Math. Mekh. (PMM)
, Vol. 61
, pp. 385
–389
(in Russian).3.
Chetayev, N. G., 1961, The Stability of Motion, Pergamon Press, New York.
4.
Hagedorn
P.
1975
, “U¨ber die Instabilit a¨t konservativer Systeme mit gyroskopischen Kra¨ften
,” Archive for Rational Mechanics and Analysis
, Vol. 58
, No. 1
, pp. 1
–9
.5.
Huseyin, K., 1978, Vibrations and Stability of Multiple Parameter Systems, Nordhoff International Publishing.
6.
Huseyin
K.
Hagedorn
P.
Teschner
W.
1983
, “On the Stability of Linear Conservative Gyroscopic Systems
,” Journal of Applied Mathematics and Physics (ZAMP)
, Vol. 34
, pp. 807
–815
.7.
Inman
D. J.
1988
, “A Sufficient Condition for the Stability of Conservative Gyroscopic Systems
,” ASME JOURNAL OF APPLIED MECHANICS
, Vol. 55
, pp. 895
–898
.8.
Inman
D. J.
Saggio
F.
1985
, “Stability Analysis of Gyroscopic Systems by Matrix Methods
,” AIAA Journal of Guidance, Control and Dynamics
, Vol. 8
, No. 1
, pp. 150
–152
.9.
Wu
Jinn-Wen
Tsao
Tsu-Chin
1994
, “A Sufficient Stability Condition for Linear Conservative Gyroscopic Systems
,” ASME JOURNAL OF APPLIED MECHANICS
, Vol. 61
, pp. 715
–717
.10.
Lakhadanov
V. M.
1978
, “On the Quadratic Integrals of Linear Autonomous Systems
,” Prikl. Math. Mekh. (PMM)
, Vol. 42
, pp. 555
–557
, (in Russian).11.
Meirovitch, L., 1970, Methods of Analytical Dynamics, McGraw-Hill, New York.
12.
Pozharicki
G. K.
1956
, “On the Instability of Motions of Conservative Systems
,” Prikl. Math. Mekh. (PMM)
, Vol. 20
, pp. 429
–433
, (in Russian).13.
Seyranian
A.
Stoustrup
J.
Kliem
W.
1995
, “On Gyroscopic Stabilization
,” Journal of Applied Mathematics and Physics (ZAMP)
, Vol. 46
, pp. 255
–264
.14.
Teschner, W., 1977, “Instabilita¨t bei nichtlinearen konservativen Systemen mit gyroskopischen Kra¨ften,” Ph.D. thesis, TH Darmstadt.
15.
Thomson, W., and Tait, G., 1879, A Treatise on Natural Philosophy, Vol. 1, Part 1, Cambridge University Press, Cambridge, UK.
16.
Walker
J.
1991
, “Stability of Linear Conservative Gyroscopic Systems
,” ASME JOURNAL OF APPLIED MECHANICS
, Vol. 58
, pp. 229
–232
.
This content is only available via PDF.
Copyright © 1998
by The American Society of Mechanical Engineers
You do not currently have access to this content.