This paper answers the question numerically how a two-dimensional incompressible Rayleigh boundary layer started impulsively past a semi-infinite flat plate with uniform velocity in the mainstream transits to steady Blasius flow. It is shown that the transition is a convective transition and smooth with no discontinuities. It is effected by the parameters called the convective and angular parameters. The velocity field gets disintegrated into discrete dissimilar diffusive layers of different convective orders. This is an example based on modified boundary layer theory of Sarma. Polynomial solutions are found using the theory of definite thickness boundary layers and the method of weighted residuals. This modifies the numerical works of Hall and Dennis, which are based on Stewartson’s theory of propagation of disturbances.

1.
Blasius
H.
,
1908
, “
Grenzschichten in Flussigkeiten mit kleiner Reibung
,”
Zeitschrift fur Mathematik und Physik
, Vol.
56
, pp.
1
37
.
2.
Dennis
S. C. R.
,
1972
, “
The Motion of a Viscous Fluid Past an Impulsively Started Semi-Infinite Flat Plate
,”
Journal of the Institute of Mathematics and its Applications
, Vol.
10
, pp.
105
117
.
3.
Glauert
M. B.
,
1956
, “
The Wall Jet
,”
Journal of Fluid Mechanics
, Vol.
1
, pp.
625
643
.
4.
Hall
M. G.
,
1969
, “
The Boundary Layer Over an Impulsively Started Flat Plate
,”
Proceedings of the Royal Society, London
, Vol.
A.310
, pp.
401
414
.
5.
Pohlhausen
K.
,
1921
, “
Zur Naberungsweisen Integration Der Differential-Gleichung Der Laminaren Reibungsschicht
,”
Zeitschrift fur angewandte Mathematik und Mechanik
, Vol.
1
, pp.
252
268
.
6.
Prandtl, L., 1904, “Uber Flussigkeitsbewegung Bei Sher Kleiner Reibung,” Verhandlungen des III. Internationalen Mathematiker-Kongresses, Heidelberg, Leipzig, pp. 484–491.
7.
Rayleigh
Lord
,
1911
, “
On the Motion of Solid Bodies Through Viscous Liquids
,”
Philosophical Magazine
, Vol.
21
, No.
6
, pp.
697
711
.
8.
Riley
N.
,
1975
, “
Unsteady Laminar Boundary Layers
,”
SIAM Review
, Vol.
17
, No.
2
, pp.
274
297
.
9.
Sarma
G. N.
,
1991
, “
Modified Boundary Layer Theory and Theory of Diffusion and Convection of Vortices, Part I—Definite Thickness Boundary Layers (Abridged version)
,”
Proceedings of the 7th International Conference on Numerical Methods in Laminar and Turbulent Flow
, Vol.
7
, Part I, Stanford University, Stanford, CA, pp.
634
644
.
10.
Schlichting
H.
,
1933
, “
Laminare Strahtausbreitung
,”
Zeitschrift fur Angewandte Mathematik und Mechanik
, Vol.
13
, pp.
260
263
.
11.
Seth
B. R.
,
1960
, “
Boundary Layer Research
,”
The Journal of the Indian Mathematical Society
, Vol.
XXIV
, Nos.
3 and 4
, pp.
527
550
.
12.
Stewartson
K.
,
1951
, “
On the Impulsive Motion of a Flat Plate in a Viscous Fluid
,”
The Quarterly Journal of Mechanics and Applied Mathematics
, Vol.
4
, pp.
182
198
.
13.
Stewartson
K.
,
1973
, “
On the Impulsive Motion of a Flat Plate in a Viscous Fluid, II
,”
The Quarterly Journal of Mechanics and Applied Mathematics
, Vol.
26
, pp.
143
152
.
14.
Stuart, J. T., 1963, “Unsteady Boundary Layers,” Laminar Boundary Layers, L. Rosenhead, ed.: Clarendon Press, Oxford, pp. 349–408.
15.
Von Karman
Th.
,
1921
, “
Uber Laminare und Turbulente Reibung
,”
Zeitschrift fur Angewandte Mathematik und Mechanik
, Vol.
1
, pp.
233
253
.
This content is only available via PDF.
You do not currently have access to this content.