Thermal stresses in an inwardly solidifying sphere are studied analytically. A closed-form solution is given which accounts for thermal expansion associated with temperature gradients and volume changes associated with phase transition. Consistent with the target application of cryopreservation of biological solutions and tissues, the material is modeled as elastic-perfectly plastic. Parametric studies using appropriate material properties and typical cryopreservation protocols suggest that strains associated with phase transition lead to far higher stresses than those associated with thermal expansion, with important implications for cryopreservation procedures.

1.
Boley
B. A.
, and
Weiner
J. H.
,
1963
, “
Elasto-Plastic Thermal Stress in a Solidifying Body
,”
J. Mech Phys Solids
, Vol.
11
, pp.
145
154
.
2.
Fletcher, N. H., 1970, The Chemical Physics of Ice, Cambridge University Press, Cambridge, UK.
3.
Gao
D. Y.
,
Lin
S.
,
Watson
P. F.
, and
Critser
J. K.
,
1995
, “
Fracture Phenomena in an Isotonic Salt Solution During Freezing and Their Elimination Using Glycerol
,”
Cryobiology
, Vol.
32
, pp.
270
284
.
4.
Heinlein
M.
,
Mukherjee
S.
, and
Richmond
O.
,
1986
, “
A Boundary Element Method Analysis of Temperature Fields and Stresses During Solidification
,”
Acta Mechanica
, Vol.
59
, pp.
59
81
.
5.
Hill, R., 1950, Mathematical Theory of Plasticity, Oxford University Press, London.
6.
Hunt
C. J.
,
Song
Y. C.
,
Bateson
A. J.
, and
Pegg
E. D.
,
1994
, “
Fractures in Cryopreserved Arteries
,”
Cryobiology
, Vol.
31
, pp.
506
515
.
7.
Ishiguro
H.
, and
Rubinsky
B.
,
1994
, “
Mechanical Interaction Between Ice Crystals and Red Blood Cells During Directional Solidification
,”
Cryobiology
, Vol.
31
, pp.
483
500
.
8.
Lin
S.
,
Gao
D. Y.
, and
Yu
X. C.
,
1990
, “
Thermal Stress Induced by Water Solidification in a Cylindrical Tube
,”
ASME Journal of Heat Transfer
, Vol.
112
, pp.
1079
1082
.
9.
Mazur
P.
,
1984
, “
Freezing of Living Cells: Mechanisms and Implications
,”
Am. J. Physiol.
, Vol.
247
, pp.
C125–C142
C125–C142
.
10.
Meryman
H. T.
,
1974
, “
Freezing Injury and its Prevention in Living Cells
,”
Annual Review of Biophysics and Bioengineering
, Vol.
3
, pp.
341
363
.
11.
Powell
R. W.
,
1958
, “
Thermal Conductivity and Expansion Coefficients of Water and Ice
,”
Adv. Phys.
, Vol.
7
, pp.
276
297
.
12.
Rabin
Y.
, and
Steif
S. P.
,
1996
, “
Analysis of Thermal Stresses Around Cryosurgical Probe
,”
Cryobiology
, Vol.
33
, pp.
276
290
.
13.
Rabin
Y.
,
Steif
S. P.
,
Taylor
M. J.
,
Julian
T. B.
, and
Wolmark
N.
,
1996
, “
An Experimental Study of the Mechanical Response of Frozen Biological Tissues at Cryogenic Temperatures
,”
Cryobiology
, Vol.
33
, pp.
472
482
.
14.
Rabin
Y.
,
Olson
P.
,
Taylor
M. J.
,
Steif
P. S.
,
Julian
T. B.
, and
Wolmark
N.
,
1997
a, “
Gross Damage Accumulation in Frozen Rabbit Liver Due to Mechanical Stress at Cryogenic Temperatures
,”
Cryobiology
, Vol.
34
, pp.
394
405
.
15.
Rabin, Y., Taylor, M. J., and Wolmark, N., 1997b, “Thermal Expansion Measurements of Frozen Biological Tissues at Cryogenic Temperatures,” ASME Journal of Biomechanical Engineering, in press.
16.
Riley
D. S.
,
Smith
F. T.
, and
Poots
G.
,
1974
, “
The Inward Solidification of Spheres and Circular Cylinders
,”
International J. of Heat and Mass Transfer
, Vol.
17
, pp.
1507
1516
.
17.
Rubinsky
B.
,
Cravalho
E. G.
, and
Mikic
B.
,
1980
, “
Thermal Stress in Frozen Organs
,”
Cryobiology
, Vol.
17
, pp.
66
73
.
18.
Rubinsky
B.
,
1982
, “
Thermal Stress During Solidification
,”
ASME Journal of Heat Transfer
, Vol.
104
, pp.
196
199
.
19.
Sohnel, O., and Novotny, P., 1995, Densities of aqueous solution of inorganic substances, Elsevier, New York.
20.
Taylor, M. J., 1987, “Physico-chemical Principles in Low Temperature Biology,” The Effect of Low Temperature on Biological Systems, B. W. W. Grout, and G. J. Morris, eds., pp. 3–71.
21.
Tien
R. H.
, and
Richmond
O.
,
1982
, “
Theory of Maximum Tensile Stresses in the Solidifying Shell of a Constrained Rectangular Casting
,”
ASME JOURNAL OF APPLIED MECHANICS
, Vol.
49
, pp.
481
486
.
22.
Zabaras
N.
, and
Ruan
Y.
,
1990
, “
Front Tracking Thermomechanical Model for Hypoelastic-Viscoplastic Behavior in a Solidifying Body
,”
Computer Methods in Applied Mechanics and Engineering
, Vol.
81
, pp.
333
364
.
23.
Zabaras
N.
,
Ruan
Y.
, and
Richmond
O.
,
1991
, “
On the Calculation of Deformations and Stresses During Axially Symmetric Solidification
,”
ASME JOURNAL OF APPLIED MECHANICS
, Vol.
58
, pp.
865
871
.
This content is only available via PDF.
You do not currently have access to this content.