Several traditional methods for discretizing random fields in stochastic mechanics applications are considered; they are the midpoint method, the interpolation method, and the local averaging method. A simple and computationally convenient criterion for estimating the accuracy of these discretization methods is developed. Also, the Volterra series representation of nonlinear input/output relationships is utilized to assess the effect of the random field discretization methods on the response variability of stochastic mechanics problems. The theoretical developments are elucidated by a numerical example involving a beam problem.

1.
Adomian, G., 1983, Stochastic Systems, Academic Press, New York.
2.
De Boor
C.
,
De Vore
R. A.
, and
Ron
A.
,
1994
a, “
Approximation from Shift-Invariant Subspaces of L2(Rd)
,”
Transaction of the American Mathematical Society
, Vol.
341
, No.
2
, pp.
787
806
.
3.
De Boor
C.
,
De Vore
R. A.
, and
Ron
A.
,
1994
b, “
The Structure of Finitely Generated Shift-Invariant Spaces in L2(Rd)
,”
Journal of Functional Analysis
, Vol.
119
, No.
1
, pp.
37
78
.
4.
Deodatis
G.
,
1989
, “
Stochastic FEM Sensitivity Analysis of Nonlinear Dynamic Problems
,”
Probabilistic Engineering Mechanics
, Vol.
4
, No.
3
, pp.
135
141
.
5.
Deodatis
G.
, and
Shinozuka
M.
,
1991
, “
The Weighted Integral Method. II: Response Variability and Reliability
,”
Journal of Engineering Mechanics
, Vol.
117
, No.
8
, pp.
1865
1877
.
6.
Der Kiureghian
A.
, and
Ke
J.-B.
,
1988
, “
The Stochastic Finite Element Method in Structural Reliability
,”
Probabilistic Engineering Mechanics
, Vol.
3
, No.
2
, pp.
83
91
.
7.
Elishakoff
I.
,
1979
, “
Simulation of Space-Random Fields for Solution of Stochastic Boundary-Value Problems
,”
Journal of the Acoustical Society of America
, Vol.
65
, No.
2
, pp.
399
403
.
8.
Ghanem, R., and Spanos, P., 1991, Stochastic Finite Elements: A Spectral Approach, Spnnger-Verlag, New York.
9.
Lin, Y. K., and Cai, G. Q., 1995, Probabilistic Structural Dynamics: Advanced Theory and Applications, McGraw-Hill, New York.
10.
Liu
P.-L.
, and
Der Kiureghian
A.
,
1991
, “
Finite Element Reliability of Geometrically Nonlinear Uncertain Structures
,”
Journal of Engineering Mechanics
, Vol.
117
, No.
8
, pp.
1806
1825
.
11.
Liu
W. K.
,
Belytschko
T.
, and
Mani
A.
,
1986
, “
Random Field Finite Elements
,”
International Journal for Numerical Methods in Engineering
, Vol.
23
, pp.
1831
1845
.
12.
Priestley, M. B., 1981, Spectral Analysis and Time Series, Academic Press, London.
13.
Rugh, W. L., 1981, Nonlinear System Theory: The Volterra/Wiener Approach, John Hopkins University Press, Baltimore, MD.
14.
Takada
T.
,
1990
, “
Weighted Integral Method in Multi-dimensional Stochastic Finite Element Analysis
,”
Probabilistic Engineering Mechanics
, Vol.
5
, No.
4
, pp.
158
166
.
15.
Vanmarcke
E. H.
,
1994
, “
Stochastic Finite Elements and Experimental Measurements
,”
Probabilistic Engineering Mechanics
, Vol.
9
, pp.
103
114
.
16.
Vanmarcke
E. H.
, and
Grigoriu
M.
,
1983
, “
Stochastic Finite Element Analysis of Simple Beams
,”
Journal of Engineering Mechanics
, Vol.
109
, No.
5
, pp.
1203
1214
.
17.
Zhang
J.
, and
Ellingwood
,
1994
, “
Orthogonal Series Expansion of Random Fields in Reliability Analysis
,”
Journal of Engineering Mechanics
, Vol.
120
, No.
12
, pp.
2660
2677
.
This content is only available via PDF.
You do not currently have access to this content.