This paper is concerned with the electro-elastic analysis of a conducting rigid line inclusion at the interface of two bonded piezoelectric materials. By combining the analytic function theory and the Stroh formalism, we were able to obtain closed-form expressions for the field variables. Both the mechanical stresses and the electric displacement are shown to have at least one of the following behaviors: (i) traditional square root singularity; (ii) nonsquare root singularity; and (iii) oscillatory singularity, which depend upon the electro-elastic mismatch at the interface. By using the static equilibrium conditions, the rigid rotation vector of the inclusion is determined and the extended stress singularity factors (ESSF) are evaluated.

1.
Asundi
 
A.
, and
Deng
 
W.
,
1995
, “
Rigid Inclusions on the Interface Between Two Bonded Anisotropic Media
,”
J. Mech. Phys. Solids
, Vol.
43
, pp.
1045
1058
.
2.
Chen
 
T.
,
1993
, “
The Rotation of a Rigid Ellipsoidal Inclusion Embedded in an Anisotropic Piezoelectric Medium
,”
Int. J. Solids Structures
, Vol.
30
, pp.
1983
1995
.
3.
Chung
 
M. Y.
, and
Ting
 
T. C. T.
,
1996
, “
Piezoelectric Solid with an Elliptical Inclusion or Hole
,”
Int. J. Solids Structures
, Vol.
33
, pp.
3343
3361
.
4.
Deeg, W. F., 1980, “The Analysis of Dislocation, Crack, and Inclusion Problems in Piezoelectric Solids,” Ph.D. thesis, Stanford University, Stanford, CA.
5.
Eshelby
 
J. D.
,
Read
 
W. T.
,
Shockley
 
W.
,
1953
, “
Anisotropic Elasticity with Applications to Dislocation Theory
,”
Acta Metall.
, Vol.
1
, pp.
252
259
.
6.
Kuo, C.-M., Barnett, D. M., 1991, In: Modern Theory of Anisotropic Elasticity and Applications J. J. Wu, T. C. T. Ting, D. M. Barnett, eds, SIAM Proceedings, pp. 35–50.
7.
Li
 
Q. Q.
, and
Ting
 
T. C. T.
,
1989
, “
Line Inclusions in Anisotropic Elastic Solids
,”
ASME JOURNAL OF APPLIED MECHANICS
, Vol.
56
, pp.
556
563
.
8.
Liang
 
J.
,
Han
 
J.-C.
,
Wang
 
B.
, and
Du
 
S.
,
1995
, “
Electroelastic Modelling of Anisotropic Piezoelectric Materials with an Elliptic Inclusion
,”
Int. J. Solids Structures
, Vol.
32
, pp.
2989
3000
.
9.
Lothe
 
J.
, and
Barnett
 
D. M.
,
1976
, “
Integral Formalism for Surface Waves in Piezoelectric Crystal. Existence Consideration
,”
J. Appl. Phys.
, Vol.
47
, pp.
1799
1807
.
10.
McMeeking
 
R. M.
,
1987
, “
On Mechanical Stresses at Cracks in Dielectrics with Application to Dielectric Breakdown
,”
J. Appl. Phys.
, Vol.
62
, pp.
3116
3122
.
11.
Meguid, S. A., and Deng, W., 1997, “Electro-Elastic Interaction Between a Screw Dislocation and an Elliptical lnhomogeneity in Piezoelectric Materials,” Int. J. Solids Structures in press.
12.
Muskhelishvili, N. I., 1975, Some Basic Problems of the Mathematical Theory of Elasticity, Noordhoff, Leyden.
13.
Pak
 
Y. E.
,
1990
, “
Crack Extension Force in a Piezoelectric Material
,”
ASME JOURNAL OF APPLIED MECHANICS
, Vol.
57
, pp.
79
100
.
14.
Parton
 
V. Z.
,
1976
, “
Fracture Mechanics of Piezoelectric Materials
,”
Acta Astronaut
, Vol.
3
, pp.
671
683
.
15.
Sosa
 
H.
, and
Khutoryansky
 
N.
,
1996
, “
New Developments Concerning Piezoelectric Materials with Defects
,”
Int. J. Solids Structures
, Vol.
33
, pp.
3399
3414
.
16.
Sosa
 
H. A.
, and
Pak
 
Y. E.
,
1990
, “
Three-Dimensional Eigenfunction Analysis of a Crack in a Piezoelectric Material
,”
Int. J. Solids Structures
, Vol.
26
, pp.
1
15
.
17.
Stroh
 
A. H.
,
1962
, “
Steady Static Problems in Anisotropic Elasticity
,”
J. Math. Phys.
, Vol.
41
, pp.
77
103
.
18.
Suo
 
Z.
,
Kuo
 
C.-M.
,
Barnett
 
D. M.
, and
Willis
 
J. R.
,
1992
, “
Fracture Mechanics for Piezoelectric Ceramics
,”
J. Mech. Phys. Solids
, Vol.
40
, pp.
739
765
.
19.
Ting
 
T. C. T.
,
1986
, “
Explicit Solution and Invariance of the Singularities at an Interface Crack in Anisotropic Composites
,”
Int. J. Solids Structures
, Vol.
22
, pp.
965
983
.
20.
Ting, T. C. T., 1996, Anisotropic Elasticity: Theory and Applications, Oxford University Press, Oxford, UK.
21.
Wang
 
B.
,
1992
, “
Three-Dimensional Analysis of an Ellipsoidal Inclusion in Piezoelectric Material
,”
Int. J. Solids Structures
, Vol.
29
, pp.
293
308
.
22.
Zhang
 
T.-Y.
, and
Tong
 
P.
,
1996
, “
Fracture Mechanics for a Mode II Crack in a Piezoelectric Material
,”
Int. J. Solids Structures
, Vol.
33
, pp.
343
359
.
23.
Zhong
 
Z.
, and
Meguid
 
S. A.
,
1997
, “
Interfacial Debonding of a Circular Inhomogeneity in Piezoelectric Materials
,”
Int. J. Solids Structures
, Vol.
34
, pp.
1965
1984
.
This content is only available via PDF.
You do not currently have access to this content.