Kinematic simulation of homogeneous isotropic turbulence are used to compute Lagrangian statistics of turbulence and, in particular, its time scales. The computed pseudo-Lagrangian velocity autocorrelation functions Rˆ11L(l,t) compare well with theory for a small initial separation l and short time t. We also demonstrate the feasibility of using kinematic simulation as a means of constructing Lagrangian statistics.

1.
Batchelor, G. K., 1953, The theory of homogeneous turbulence, Cambridge University Press, London.
2.
Bertogilo, J. P., 1986, “Etude d’une turbulence aniotrope; Modelisation de Sous-Maille et Approche Statistique” The`se d’ Etat, Universite C. Bernard, Lyon, France.
3.
Borgas
M. S.
and
Sawford
B. L.
,
1991
, “
The small-scale structure of acceleration correlations and its role in the statistical theory of turbulence dispersion
,”
J. Fluid Mech
. Vol.
228
, pp.
295
320
.
4.
Durbin
P. A.
,
1980
, “
A stochastic model of two-particle dispersion and concentration fluctuations in homogeneous turbulence
,”
J. Fluid Mech
. Vol.
100
, pp.
279
302
.
5.
Fung, J. C. H., Hunt, J. C. R., Perkins, R. J., Wray, A. A., and Stretch, D. D., 1991, “Defining the zonal structure of turbulence using the pressure and invariants of the deformation tensor” Proc. Third European Turbulence Conference, Stockholm, 1990, Springer-Verlag, New York.
6.
Fung
J. C. H.
,
Hunt
J. C. R.
,
Malik
N. A.
, and
Perkins
R. J.
,
1992
, “
Kinematic Simulation of homogeneous turbulent flows generated by unsteady random Fourier modes
,”
J. Fluid Mech.
, Vol.
236
, pp.
281
318
.
7.
Fung, J. C. H., and Vassilicos, J. C., 1998, “Two-particle dispersion in turbulent-like flows” Physical. Rev. E, to appear.
8.
Gibson
M. M.
,
1963
, “
Spectra of turbulence in a round jet
,”
J. Fluid Mech
. Vol.
15
, pp.
161
173
.
9.
Kolmogorov
A. N.
,
1941
, “
The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers
,”
Dokl Akad. Nauk SSSR
, Vol.
30
, pp.
301
305
.
10.
Lesieur, M., 1987, Turbulence in fluids: Stochastic and numerical modelling, M. Nijhoff, Dordrecht, Netherlands.
11.
Leslie, D. C., 1973, Developments in the theory of turbulence, Clarendon Press, Oxford, UK.
12.
Orszag
S. A.
1970
Analytical theories of turbulence
,”
J. Fluid Mech
. Vol.
41
, pp.
363
386
.
13.
Sawford
B. L.
,
1982
, “
Lagrangian Monte Carlo simulation of the turbulent motion of a pair of particles
,”
Quart. J. Roy. Meteor.
, Vol.
16
, pp.
207
213
.
14.
Taylor
G. I.
,
1921
, “
Diffusion by continuous movements
,”
Proc. Lond. Math. Soc.
, Vol.
20
, pp.
196
211
.
15.
Tennekes
H.
,
1975
, “
Eulerian and Lagrangian time microscales in isotropic turbulence
,”
J. Fluid Mech.
, Vol.
67
, pp.
561
567
.
16.
Yeung
P. K.
,
1994
, “
Direct numerical simulation of two-particle relative diffusion in isotropic turbulence
,”
Phys. Fluid
, Vol.
6
, pp.
3416
3428
.
17.
Yeung
P. K.
,
1997
, “
One- and two-particle Lagrangian acceleration correlations in numerically simulated homogeneous turbulence
,”
Phys. Fluid
, Vol.
9
, pp.
2981
2990
.
This content is only available via PDF.
You do not currently have access to this content.