Kinematic simulation of homogeneous isotropic turbulence are used to compute Lagrangian statistics of turbulence and, in particular, its time scales. The computed pseudo-Lagrangian velocity autocorrelation functions compare well with theory for a small initial separation l and short time t. We also demonstrate the feasibility of using kinematic simulation as a means of constructing Lagrangian statistics.
Issue Section:
Technical Papers
1.
Batchelor, G. K., 1953, The theory of homogeneous turbulence, Cambridge University Press, London.
2.
Bertogilo, J. P., 1986, “Etude d’une turbulence aniotrope; Modelisation de Sous-Maille et Approche Statistique” The`se d’ Etat, Universite C. Bernard, Lyon, France.
3.
Borgas
M. S.
Sawford
B. L.
1991
, “The small-scale structure of acceleration correlations and its role in the statistical theory of turbulence dispersion
,” J. Fluid Mech
. Vol. 228
, pp. 295
–320
.4.
Durbin
P. A.
1980
, “A stochastic model of two-particle dispersion and concentration fluctuations in homogeneous turbulence
,” J. Fluid Mech
. Vol. 100
, pp. 279
–302
.5.
Fung, J. C. H., Hunt, J. C. R., Perkins, R. J., Wray, A. A., and Stretch, D. D., 1991, “Defining the zonal structure of turbulence using the pressure and invariants of the deformation tensor” Proc. Third European Turbulence Conference, Stockholm, 1990, Springer-Verlag, New York.
6.
Fung
J. C. H.
Hunt
J. C. R.
Malik
N. A.
Perkins
R. J.
1992
, “Kinematic Simulation of homogeneous turbulent flows generated by unsteady random Fourier modes
,” J. Fluid Mech.
, Vol. 236
, pp. 281
–318
.7.
Fung, J. C. H., and Vassilicos, J. C., 1998, “Two-particle dispersion in turbulent-like flows” Physical. Rev. E, to appear.
8.
Gibson
M. M.
1963
, “Spectra of turbulence in a round jet
,” J. Fluid Mech
. Vol. 15
, pp. 161
–173
.9.
Kolmogorov
A. N.
1941
, “The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers
,” Dokl Akad. Nauk SSSR
, Vol. 30
, pp. 301
–305
.10.
Lesieur, M., 1987, Turbulence in fluids: Stochastic and numerical modelling, M. Nijhoff, Dordrecht, Netherlands.
11.
Leslie, D. C., 1973, Developments in the theory of turbulence, Clarendon Press, Oxford, UK.
12.
Orszag
S. A.
1970
“Analytical theories of turbulence
,” J. Fluid Mech
. Vol. 41
, pp. 363
–386
.13.
Sawford
B. L.
1982
, “Lagrangian Monte Carlo simulation of the turbulent motion of a pair of particles
,” Quart. J. Roy. Meteor.
, Vol. 16
, pp. 207
–213
.14.
Taylor
G. I.
1921
, “Diffusion by continuous movements
,” Proc. Lond. Math. Soc.
, Vol. 20
, pp. 196
–211
.15.
Tennekes
H.
1975
, “Eulerian and Lagrangian time microscales in isotropic turbulence
,” J. Fluid Mech.
, Vol. 67
, pp. 561
–567
.16.
Yeung
P. K.
1994
, “Direct numerical simulation of two-particle relative diffusion in isotropic turbulence
,” Phys. Fluid
, Vol. 6
, pp. 3416
–3428
.17.
Yeung
P. K.
1997
, “One- and two-particle Lagrangian acceleration correlations in numerically simulated homogeneous turbulence
,” Phys. Fluid
, Vol. 9
, pp. 2981
–2990
.
This content is only available via PDF.
Copyright © 1998
by The American Society of Mechanical Engineers
You do not currently have access to this content.