The deformation, using linear poroelasticity, of a two-dimensional box of porous material due to fluid flow from a line source is considered as a model of certain filtration processes. Analytical solutions for the steady-state displacement, pressure, and fluid velocity are derived when the side walls of the filter have zero solid stress. A numerical solution for the case where the porous material adheres to the side walls is also found. It will be shown, however, that simpler approximate solutions can be derived which predict the majority of the deformation behavior of the filter.

1.
Armstrong
C. G.
,
Lai
W. M.
, and
Mow
V. C.
,
1984
, “
An Analysis of the Unconfined Compression of Articular Cartilage
,”
ASME Journal of Biomechanical Engineering
, Vol.
106
, pp.
165
173
.
2.
Barry
S. I.
, and
Aldis
G. K.
,
1990
, “
Comparison of models for flow induced deformation of soft biological tissue
,”
Journal of Biomechanics
, Vol.
23
, pp.
647
654
.
3.
Barry
S. I.
, and
Aldis
G. K.
,
1993
, “
Radial flow through deformable porous shells
,”
Journal Australian Mathematical Society
, Series B, Vol.
34
, pp.
333
354
.
4.
Barry
S. I.
,
Aldis
G. K.
, and
Mercer
G. N.
,
1995
, “
Injection of fluid into a layer of deformable porous medium
,”
ASME Applied Mechanics Reviews
, Vol.
48
, pp.
722
726
.
5.
Barry, S. I., and Mercer, G. N., 1997, “Deformation and Flow Within a Finite Poroelastic Medium, II—Numerical Method,” ASME JOURNAL OF APPLIED MECHANICS, submitted for publication.
6.
Barry, S. I., Zoppou, C., and Mercer, G. N., 1997, “Deformation and fluid flow due to a source in a poroelastic layer,” accepted for publication. Applied Mathematics Modelling.
7.
Biot
M. A.
,
1941
, “
General theory of three-dimensional consolidation
,”
Journal Applied Physics
, Vol.
12
, pp.
155
164
.
8.
Booker
J. R.
, and
Carter
J. P.
,
1986
, “
Long term subsidence due to fluid extraction from a saturated, anisotropic, elastic soil mass
,”
Quarterly Journal of Mechanics and Applied Mathematics
, Vol.
39
, pp.
85
97
.
9.
Booker
J. R.
, and
Carter
J. P.
,
1987
, “
Withdrawal of a compressible pore fluid from a point sink in an isotropic elastic half space with anisotropic permeability
,”
International Journal of Solids and Structures
, Vol.
23
, pp.
369
385
.
10.
Bowen
R. M.
,
1980
, “
Incompressible porous media models by the theory of mixtures
,”
International Journal of Engineering Science
, Vol.
18
, pp.
1129
1148
.
11.
Chiarella
C.
, and
Booker
J. R.
,
1975
, “
The time-settlement behaviour of a rigid die resting on a deep clay layer
,”
Quarterly Journal of Mechanics and Applied Mathematics
, Vol.
28
, pp.
317
328
.
12.
Gibson
R. E.
,
Schiffman
R. L.
, and
Pu
S. L.
,
1970
, “
Plane strain and axially symmetric consolidation of a clay layer on a smooth impervious base
,”
Quarterly Journal of Mechanics and Applied Mathematics
, Vol.
23
, pp.
505
520
.
13.
Heinrich
G.
, and
Desoyer
K.
,
1961
, “
Theorie dreidimensionaler Setzungsvorgaenge in Tonshichten
,”
Ingenieur-Archiv
, Vol.
30
, pp.
225
253
.
14.
Holmes
M. H.
,
1985
, “
A theoretical analysis for determining the nonlinear hydraulic permeability of a soft tissue from a permeation experiment
,”
Bulletin of Mathematical Biology
, Vol.
47
, pp.
669
683
.
15.
Hou
J. S.
,
Holmes
M. H.
,
Lai
W. M.
, and
Mow
V. C.
,
1989
, “
Boundary Conditions at the Cartilage-Synovial Fluid Interface for Joint Lubrication and Theoretical Verifications
,”
ASME Journal of Biomechanical Engineering
, Vol.
111
, pp.
78
87
.
16.
Jensen
O. E.
,
Glucksberg
M. R.
,
Sachs
J. R.
, and
Grotberg
J. B.
,
1994
, “
Weakly Nonlinear Deformation of a Thin Poroelastic Layer With a Free Surface
,”
ASME JOURNAL OF APPLIED MECHANICS
, Vol.
61
, pp.
729
731
.
17.
Kenyon
D. E.
,
1976
, “
The theory of an incompressible solid-fluid mixture
,”
Archives of Rational Mechanical Analysis
, Vol.
62
, pp.
131
147
.
18.
Lai
W. M.
, and
Mow
V. C.
,
1980
, “
Drag induced compression of articular cartilage during a permeation experiment
,”
Biorheology
, Vol.
17
, pp.
111
123
.
19.
Mak
A. F.
,
Lai
W. M.
, and
Mow
V. C.
,
1987
, “
Biphasic indentation of articular cartilage—I. Theoretical analysis
,”
Journal of Biomechanics
, Vol.
20
, pp.
703
714
.
20.
Mow, V. C., Hou, J. S., Owens, J. M., and Ratcliffe, A., 1990, “Biphasic and quasilinear viscoelastic hydrated soft tissues,” Biomechanics of Diarthrodial Joints, V. C. Mow, A. Ratcliffe, and S. L-Y. Woo, eds., Springer-Verlag, New York, pp. 215–260.
21.
Mow
V. C.
, and
Lai
W. M.
,
1980
, “
Recent developments in synovial joint biomechanics
,”
SlAM Review
, Vol.
22
, pp.
275
317
.
22.
Sachs
J. R.
,
Glucksberg
M. R.
,
Jensen
O. E.
, and
Grotberg
J. B.
,
1994
, “
Linear Flow and Deformation in a Poroelastic Disk With a Free Surface
,”
ASME JOURNAL OF APPLIED MECHANICS
, Vol.
61
, pp.
726
728
.
23.
Saxena, S. K., ed., 1978, Evaluation and Prediction of Subsidence, ASCE, New York, pp. 1–25.
24.
Spilker
R. L.
,
Suh
J.-K.
, and
Mow
V. C.
,
1992
, “
A Finite Element Analysis of the Indentation Stress-Relaxation Response of Linear Biphasic Articular Cartilage
,”
ASME Journal of Biomechanical Engineering
, Vol.
114
, pp.
191
201
.
25.
Suh
J.-K.
, and
Spilker
R. L.
,
1994
, “
Indentation Analysis of Biphasic Articular Cartilage: Nonlinear Phenomena Under Finite Deformation
,”
ASME Journal of Biomechanical Engineering
, Vol.
116
, pp.
1
9
.
26.
Terzaghi, K., 1925, Erdbaumechanik auf Bodenphysikalischen Grundlagen, Wien, Deutick.
This content is only available via PDF.
You do not currently have access to this content.