The deformation, using linear poroelasticity, of a two-dimensional box of porous material due to fluid flow from a line source is considered as a model of certain filtration processes. Analytical solutions for the steady-state displacement, pressure, and fluid velocity are derived when the side walls of the filter have zero solid stress. A numerical solution for the case where the porous material adheres to the side walls is also found. It will be shown, however, that simpler approximate solutions can be derived which predict the majority of the deformation behavior of the filter.
Issue Section:
Technical Papers
Topics:
Deformation,
Filters,
Porous materials,
Displacement,
Filtration,
Fluid dynamics,
Fluids,
Pressure,
Steady state,
Stress
1.
Armstrong
C. G.
Lai
W. M.
Mow
V. C.
1984
, “An Analysis of the Unconfined Compression of Articular Cartilage
,” ASME Journal of Biomechanical Engineering
, Vol. 106
, pp. 165
–173
.2.
Barry
S. I.
Aldis
G. K.
1990
, “Comparison of models for flow induced deformation of soft biological tissue
,” Journal of Biomechanics
, Vol. 23
, pp. 647
–654
.3.
Barry
S. I.
Aldis
G. K.
1993
, “Radial flow through deformable porous shells
,” Journal Australian Mathematical Society
, Series B, Vol. 34
, pp. 333
–354
.4.
Barry
S. I.
Aldis
G. K.
Mercer
G. N.
1995
, “Injection of fluid into a layer of deformable porous medium
,” ASME Applied Mechanics Reviews
, Vol. 48
, pp. 722
–726
.5.
Barry, S. I., and Mercer, G. N., 1997, “Deformation and Flow Within a Finite Poroelastic Medium, II—Numerical Method,” ASME JOURNAL OF APPLIED MECHANICS, submitted for publication.
6.
Barry, S. I., Zoppou, C., and Mercer, G. N., 1997, “Deformation and fluid flow due to a source in a poroelastic layer,” accepted for publication. Applied Mathematics Modelling.
7.
Biot
M. A.
1941
, “General theory of three-dimensional consolidation
,” Journal Applied Physics
, Vol. 12
, pp. 155
–164
.8.
Booker
J. R.
Carter
J. P.
1986
, “Long term subsidence due to fluid extraction from a saturated, anisotropic, elastic soil mass
,” Quarterly Journal of Mechanics and Applied Mathematics
, Vol. 39
, pp. 85
–97
.9.
Booker
J. R.
Carter
J. P.
1987
, “Withdrawal of a compressible pore fluid from a point sink in an isotropic elastic half space with anisotropic permeability
,” International Journal of Solids and Structures
, Vol. 23
, pp. 369
–385
.10.
Bowen
R. M.
1980
, “Incompressible porous media models by the theory of mixtures
,” International Journal of Engineering Science
, Vol. 18
, pp. 1129
–1148
.11.
Chiarella
C.
Booker
J. R.
1975
, “The time-settlement behaviour of a rigid die resting on a deep clay layer
,” Quarterly Journal of Mechanics and Applied Mathematics
, Vol. 28
, pp. 317
–328
.12.
Gibson
R. E.
Schiffman
R. L.
Pu
S. L.
1970
, “Plane strain and axially symmetric consolidation of a clay layer on a smooth impervious base
,” Quarterly Journal of Mechanics and Applied Mathematics
, Vol. 23
, pp. 505
–520
.13.
Heinrich
G.
Desoyer
K.
1961
, “Theorie dreidimensionaler Setzungsvorgaenge in Tonshichten
,” Ingenieur-Archiv
, Vol. 30
, pp. 225
–253
.14.
Holmes
M. H.
1985
, “A theoretical analysis for determining the nonlinear hydraulic permeability of a soft tissue from a permeation experiment
,” Bulletin of Mathematical Biology
, Vol. 47
, pp. 669
–683
.15.
Hou
J. S.
Holmes
M. H.
Lai
W. M.
Mow
V. C.
1989
, “Boundary Conditions at the Cartilage-Synovial Fluid Interface for Joint Lubrication and Theoretical Verifications
,” ASME Journal of Biomechanical Engineering
, Vol. 111
, pp. 78
–87
.16.
Jensen
O. E.
Glucksberg
M. R.
Sachs
J. R.
Grotberg
J. B.
1994
, “Weakly Nonlinear Deformation of a Thin Poroelastic Layer With a Free Surface
,” ASME JOURNAL OF APPLIED MECHANICS
, Vol. 61
, pp. 729
–731
.17.
Kenyon
D. E.
1976
, “The theory of an incompressible solid-fluid mixture
,” Archives of Rational Mechanical Analysis
, Vol. 62
, pp. 131
–147
.18.
Lai
W. M.
Mow
V. C.
1980
, “Drag induced compression of articular cartilage during a permeation experiment
,” Biorheology
, Vol. 17
, pp. 111
–123
.19.
Mak
A. F.
Lai
W. M.
Mow
V. C.
1987
, “Biphasic indentation of articular cartilage—I. Theoretical analysis
,” Journal of Biomechanics
, Vol. 20
, pp. 703
–714
.20.
Mow, V. C., Hou, J. S., Owens, J. M., and Ratcliffe, A., 1990, “Biphasic and quasilinear viscoelastic hydrated soft tissues,” Biomechanics of Diarthrodial Joints, V. C. Mow, A. Ratcliffe, and S. L-Y. Woo, eds., Springer-Verlag, New York, pp. 215–260.
21.
Mow
V. C.
Lai
W. M.
1980
, “Recent developments in synovial joint biomechanics
,” SlAM Review
, Vol. 22
, pp. 275
–317
.22.
Sachs
J. R.
Glucksberg
M. R.
Jensen
O. E.
Grotberg
J. B.
1994
, “Linear Flow and Deformation in a Poroelastic Disk With a Free Surface
,” ASME JOURNAL OF APPLIED MECHANICS
, Vol. 61
, pp. 726
–728
.23.
Saxena, S. K., ed., 1978, Evaluation and Prediction of Subsidence, ASCE, New York, pp. 1–25.
24.
Spilker
R. L.
Suh
J.-K.
Mow
V. C.
1992
, “A Finite Element Analysis of the Indentation Stress-Relaxation Response of Linear Biphasic Articular Cartilage
,” ASME Journal of Biomechanical Engineering
, Vol. 114
, pp. 191
–201
.25.
Suh
J.-K.
Spilker
R. L.
1994
, “Indentation Analysis of Biphasic Articular Cartilage: Nonlinear Phenomena Under Finite Deformation
,” ASME Journal of Biomechanical Engineering
, Vol. 116
, pp. 1
–9
.26.
Terzaghi, K., 1925, Erdbaumechanik auf Bodenphysikalischen Grundlagen, Wien, Deutick.
This content is only available via PDF.
Copyright © 1997
by The American Society of Mechanical Engineers
You do not currently have access to this content.