A theory of wave propagation in isotropic poroelastic media saturated by two immiscible Newtonian fluids is presented. The macroscopic constitutive relations, and mass and momentum balance equations are obtained by volume averaging the microscale balance and constitutive equations and assuming small deformations. Momentum transfer terms are expressed in terms of intrinsic and relative permeabilities assuming the validity of Darcy’s law. The coefficients of macroscopic constitutive relations are expressed in terms of measurable quantities in a novel way. The theory demonstrates the existence of three compressional and one rotational wave. The third compressional wave is associated with the pressure difference between the fluid phase and dependent on the slope of the capillary pressure-saturation relation.

1.
Anderson
T. B.
, and
Jackson
R.
,
1967
, “
A fluid mechanical description of fluidized beds
,”
I&EC Fundamentals
, Vol.
6
, pp.
527
539
.
2.
Auriault
J. L.
,
1980
, “
Dynamic behaviour of a porous medium saturated by a Newtonian fluid
,”
Int. J. Eng. Sci.
, Vol.
18
, pp.
775
785
.
3.
Auriault
J. L.
,
Borne
L.
, and
Chambon
R.
,
1985
, “
Dynamics of porous saturated media: Checking of the generalized law of Darcy
,”
J. Acoust. Soc. Am.
, Vol.
77
, pp.
1641
1650
.
4.
Bear, J., 1972, Dynamics of Fluids in Porous Media, Elsevier, New York.
5.
Bear, J., and Bachmat, Y., 1990, Introduction to Modeling of Transport Phenomena in Porous Media, Kluwer, Dordrect, The Netherlands.
6.
Bear
J.
,
Corapcioglu
M. Y.
, and
Balakrishna
J.
,
1984
, “
Modeling of centrifugal filtration in unsaturated deformable porous media
,”
Adv. Water Resources
, Vol.
7
, pp.
150
167
.
7.
Bedford
A.
, and
Drumheller
D. S.
,
1983
, “
Theories of immiscible and structured mixtures
,”
Int. J. Eng. Sci.
, Vol.
21
, pp.
863
960
.
8.
Berryman
J. G.
,
1980
, “
Confirmation of Biot’s theory
,”
Appl Phys. Lett.
, Vol.
37
, pp.
382
384
.
9.
Berryman
J. G.
,
1981
, “
Elastic wave propagation in fluid-saturated porous media
,”
J. Acoust. Soc. Am.
, Vol.
69
, pp.
416
424
.
10.
Berryman
J. G.
,
1986
, “
Effective medium approximation for elastic constants of porous solids with microscopic heterogeneity
,”
J. Appl. Phys.
, Vol.
59
, pp.
1136
1140
.
11.
Biot
M. A.
,
1941
, “
General theory of three-dimensional consolidation
,”
J. Appl. Physics
, Vol.
12
, pp.
155
164
.
12.
Biot
M. A.
,
1956
a, “
Theory of propagation of elastic wave in a fluid saturated porous solid, I. Low frequency range
,”
J. Acoust. Soc. Am.
, Vol.
28
, pp.
168
178
.
13.
Biot
M. A.
,
1956
b, “
Theory of propagation elastic waves in a fluid saturated porous solid, II. Higher frequency range
,”
J. Acoust. Soc. Am.
, Vol.
28
, pp.
169
191
.
14.
Biot
M. A.
, and
Willis
D. G.
,
1957
, “
The Elastic Coefficients of the Theory of Consolidation
,”
ASME JOURNAL OF APPLIED MECHANICS
, Vol.
24
, pp.
594
601
.
15.
Bowen, R. M., 1976, “The theory of mixtures,” Continuum Physics, Vol. 3, A. C. Eringen, ed., Academic Press, New York.
16.
Bowen
R. M.
, and
Lockett
R. R.
,
1983
, “
Inertial effects in poroelasticity
,”
ASME JOURNAL OF APPLIED MECHANICS
, Vol.
50
, pp.
334
342
.
17.
Brutsaert
W.
,
1964
, “
The propagation of elastic waves in unconsolidated unsaturated granular mediums
,”
J. Geophys. Res.
, Vol.
69
, pp.
243
257
.
18.
Brutsaert
W.
, and
Luthin
J. N.
,
1964
, “
The velocity of sound in soils near the surface as a function of the moisture content
,”
J. Geophys. Res.
, Vol.
69
, pp.
643
652
.
19.
Burridge
R.
, and
Keller
J. B.
,
1981
, “
Poroelasticity equations derived from microstructure
,”
J. Acoust. Soc. Am.
, Vol.
70
, pp.
1140
1146
.
20.
Corapcioglu, M. Y., and Tuncay, K., 1996, “Propagation of waves in porous media,” Advances in Porous Media, Vol. 3, M. Y. Corapcioglu, ed., Elsevier, Amsterdam, pp. 361–440.
21.
de la Cruz
V.
, and
Spanos
T. J. T.
,
1985
, “
Seismic wave propagation in a porous medium
,”
Geophysics
, Vol.
50
, pp.
1556
1565
.
22.
de la Cruz
V.
, and
Spanos
T. J. T.
,
1989
, “
Thermomechanical coupling during seismic wave propagation in a porous medium
,”
J. Geophysical Res.
, Vol.
94
, pp.
637
642
.
23.
Domenico
S. N.
,
1974
, “
Effects of water saturation of sand reservoirs encased in shales
,”
Geophysics
, Vol.
29
, pp.
759
769
.
24.
Drumheller
D. J.
,
1978
, “
Theoretical treatment of a porous solid using a mixture theory
,”
Int. J. Solids and Structures
, Vol.
14
, pp.
441
456
.
25.
Fatt
I.
,
1959
, “
The Biot-Willis Elastic Coefficients for a Sandstone
,”
ASME JOURNAL OF APPLIED MECHANICS
, Vol.
26
, pp.
296
297
.
26.
Garg
S. K.
,
1971
, “
Wave propagation effects in a fluid saturated porous solid
,”
J. Geophys. Res.
, Vol.
76
, pp.
7947
7962
.
27.
Garg
S. K.
,
Brownell
C. H.
,
Pritchett
, and
Herrman
R. G.
,
1975
, “
Shock wave propagation in fluid saturated porous media
,”
J. Appl. Phys.
, Vol.
46
, pp.
702
713
.
28.
Garg
S. K.
, and
Nayfeh
A. H.
,
1986
, “
Compressional wave propagation in liquid and/or gas saturated elastic porous media
,”
J. Appl. Phys.
, Vol.
60
, pp.
3045
3055
.
29.
Geertsma
J.
, and
Smith
D. C.
,
1961
, “
Some aspects of elastic wave propagation in fluid saturated porous solids
,”
Geophysics
, Vol.
26
, pp.
160
180
.
30.
Jenkins
J. T.
,
1980
, “
Static Equilibrium of a Fluid-Saturated Porous Solid
,”
ASME JOURNAL OF APPLIED MECHANICS
, Vol.
47
, pp.
493
495
.
31.
Katsube
N.
, and
Carrol
M. M.
,
1987
, “
The Modified Mixture Theory for Fluid-Filled Porous Materials: Theory
,”
ASME JOURNAL OF APPLIED MECHANICS
, Vol.
54
, pp.
35
40
.
32.
Keller, J. B., 1977, “Effective behavior of heterogeneous media,” Statistical Mechanics and Statistical Methods in Theory and Applications, U. Landman, ed., Plenum, New York, pp. 631–644.
33.
Levy
T.
,
1979
, “
Propagation of waves in a fluid-saturated porous elastic solid
,”
Int. J. Eng. Sci.
, Vol.
17
, pp.
1005
1014
.
34.
Marle
C. M.
,
1967
, “
Ecoulements monophasiques en milleu poreux
,”
Rev. Inst. Francais du Petrole
, Vol.
22
, pp.
1471
1509
.
35.
Mochizuki
S.
,
1982
, “
Attenuation in partially saturated rocks
,”
J. Geophysical Res.
, Vol.
87
, pp.
8598
8604
.
36.
Murphy
W. F.
,
1982
, “
Effects of partial water saturation on attenuation in Massilon sandstone and Vycor porous glass
,”
J. Acoust. Soc. Am.
, Vol.
71
, pp.
1458
1468
.
37.
Plona
T. J.
,
1980
, “
Observation of a second bulk compressional wave in a porous medium at ultrasonic frequencies
,”
App. Phys. Lett.
, Vol.
36
, pp.
259
261
.
38.
Pride
S. R.
,
Gangi
A. F.
, and
Morgan
F. D.
,
1992
, “
Deriving the equations of motion for isotropic media
,”
J. Acoust. Soc. Am.
, Vol.
92
, pp.
3278
3290
.
39.
Prevost
J. H.
,
1980
, “
Mechanics of continuous porous media
,”
Int. J. Eng. Sci.
, Vol.
18
, pp.
787
800
.
40.
Sanchez-Palencia, E., 1980, Non-Homogeneous Media and Vibration Theory, Springer-Verlag, New York.
41.
Santos
J. E.
, and
Corbero
J. M.
, and
Douglas
J.
,
1990
a, “
Static and dynamic behaviour of a porous solid
,”
J. Acoust. Soc. Am.
, Vol.
87
, pp.
1428
1438
.
42.
Santos
J. E.
,
Douglas
J.
,
Corbero
J. M.
, and
Lovera
O. M.
,
1990
b, “
A model for wave propagation in a porous medium saturated by a two-phase fluid
,”
J. Acoust. Soc. Am.
, Vol.
87
, pp.
1439
1448
.
43.
Scott
P. H.
, and
Rose
W.
,
1953
, “
An explanation of the Yuster effect
,”
J. Petr. Technol.
, Vol.
5
, pp.
19
20
.
44.
Slattery
J. C.
,
1967
, “
Flow of viscoelastic fluids through porous media
,”
AIChE J.
, Vol.
13
, pp.
1066
1071
.
45.
Slattery
J. C.
,
1968
, “
Multiphase viscoelastic fluids through porous media
,”
AIChE J.
, Vol.
14
, pp.
50
56
.
46.
Slattery, J. C., 1981, Momentum, Energy and Mass Transfer in Continua, Krieger, New York.
47.
Tuncay
K.
, and
Corapcioglu
M. Y.
,
1996
, “
Body waves in poroelastic media saturated by two immiscible fluids
,”
J. Geophysical Research-Solid Earth
, Vol.
101
, pp.
149
25
.
48.
Whitaker
S.
,
1967
, “
Diffusion and dispersion in porous media
,”
AIChE J.
, Vol.
13
, pp.
420
427
.
49.
Yuster
S. T.
,
1953
, “
Theoretical considerations of multiphase flow in idealized capillary system
,”
Proc. Third World Petr. Cong., The Hauge
, Vol.
2
, pp.
436
445
.
50.
Zienkiewicz
O. C.
,
Chang
C. T.
, and
Battess
P.
,
1980
, “
Drained, undrained, consolidating, and dynamic behaviour assumptions in soils: Limits of validity
,”
Geotechnique
, Vol.
30
, pp.
385
395
.
This content is only available via PDF.
You do not currently have access to this content.