This paper deals with the theoretical aspects concerning linear elastodynamic of damped continuum medium in the frequency domain. Eigenvalue analysis and frequency response function are studied. The methods discussed here use a dynamic substructuring approach. The first method is based on a mixed variational formulation in which Lagrange multipliers are introduced to impose the linear constraints on the coupling interfaces. A modal reduction of each substructure is obtained using its free-interface modes. A practical construction of a unique solution is carried out using the Singular Value Decomposition (SVD) related only to the frequency-independent Lagrange multiplier terms. The second method is similar to the first one replacing the free-interface modes by the fixed-interface modes and elastostatic operator on the interface of each substructure.

1.
Argyris, J., and Meljnek, H. P., 1991, Dynamics of Structures, North-Holland, Amsterdam.
2.
Brezzi, F., and Fortin, M., 1991, Mixed and Hybrid Finite Element Methods, Springer, Berlin.
3.
Craig, R. R., Jr., 1985, “A Review of Time Domain and Frequency Domain Component Mode Synthesis Method,” Combined Experimental-Analytical Modeling of Dynamic Structural Systems, D. R. Martinez and A. K. Miller, eds., ASME, New York.
4.
Craig
R. R.
, and
Bampton
M. C. C.
,
1968
, “
Coupling of Substructures for Dynamic Analysis
,”
AIAA Journal
, Vol.
6
, pp.
1313
1319
.
5.
Dautray, R., and Lions, J.-L., 1992, Mathematical Analysis and Numerical Methods for Science and Technology, Springer-Verlag, Berlin.
6.
Farhat
C.
, and
Geradin
M.
,
1994
, “
On a Component Mode Method and its Application to Incompatible Substructures
,”
Computer and Structures
, Vol.
51
, No.
5
, pp.
459
473
.
7.
Farstad
J. E.
, and
Singh
R.
,
1995
, “
Structurally Transmitted Dynamic Power in Discretely Joined Damped Component Assemblies
,”
J. Acoust. Soc. Am.
, Vol.
97
, No.
5
, pp.
2855
2865
.
8.
Flashner
H.
,
1986
, “
An Orthogonal Decomposition Approach to Modal Synthesis
,”
Int. J. Num. Meth. Eng.
, Vol.
23
, No.
3
, pp.
471
493
.
9.
Golub, G. H., and Van Loan, C. F., 1989, Matrix Computations, 2nd ed., The John Hopkins University Press, Baltimore.
10.
Guyan, R. J., 1965, “Reduction of Stiffness and Mass Matrices,” AIAA Journal, Vol. 3.
11.
Hale
A. L.
, and
Meirovitch
L.
,
1980
, “
A General Substructure Synthesis Method for the Dynamic Simulation of Complex Structures
,”
Journal of Sound and Vibration
, Vol.
69
, No.
2
, pp.
309
326
.
12.
Hurty
W. C.
,
1965
, “
Dynamic Analysis of Structural Systems Using Component Modes
,”
AIAA Journal
, Vol.
3
, No.
4
, pp.
678
685
.
13.
Jen
C. W.
, and
Johnson
D. A.
, and
Dubois
F.
,
1995
, “
Numerical Modal Analysis of Structures Based on a Revised Substructure Synthesis Approach
,”
Journal of Sound and Vibration
, Vol.
180
, No.
2
, pp.
185
203
.
14.
Klein
L. R.
, and
Dowell
E. H.
,
1974
, “
Analysis of Modal damping by Component Modes Method Using Lagrange Multipliers
,”
ASME JOURNAL OF APPLIED MECHANICS
, Vol.
39
, pp.
727
732
.
15.
Kree, P., and Soize, C., 1986, Mathematics of Random Phenomena, Reidel, Dordrecht.
16.
Leung, A. Y. T., 1993, Dynamic Stiffness and Substructures, Springer-Verlag, New York.
17.
MacNeal
R. H.
,
1971
, “
A Hybrid Method of Component Mode Synthesis
,”
Computers and Structures
, Vol.
1
, pp.
581
601
.
18.
Marsden, J. E., and Hughes, T. J. R., 1983, Mathematical Foundations of Elasticity, Prentice-Hall, Englewood Cliffs, NJ.
19.
Min
K. W.
,
Igusa
T.
, and
Achenbach
J. D.
,
1992
, “
Frequency Window Method for Strongly Coupled and Multiply Connected Structural Systems: Multiple-Mode Windows
,”
ASME JOURNAL OF APPLIED MECHANICS
, Vol.
59
, pp.
244
252
.
20.
Morand, H. J. P., and Ohayon, R., 1995, Fluid Structure Interaction, John Wiley and Sons, New York.
21.
Rubin
S.
,
1975
, “
Improved Component Mode Representation for Structural Dynamic Analysis
,”
AIAA Journal
, Vol.
18
, No
8
, pp.
995
1006
.
22.
Rook
T. E.
, and
Singh
R.
,
1995
, “
Power Flow Through Multidimensional Compliant Joints Using Mobility and Modal Approaches
,”
J. Acoust. Soc. Am.
, Vol.
97
, No.
5
, pp.
2882
2891
.
23.
Schmidt, Th., and Mu¨ller, P. C., 1993, “A Parameter Estimation Method for Multibody Systems with Constraints,” Advanced Multibody System Dynamics, W. Schiehlen, ed., Kluwer Academic Publishers, Dordrecht, pp. 427–433.
24.
Shabana
A. A.
,
1991
, “
Constrained Motion of Deformable Bodies
,”
Int. J. Num. Meth. Eng.
, Vol.
32
, pp.
1813
1831
.
25.
Singh
R. P.
, and
Likins
P. W.
,
1985
, “
Singular Value Decomposition for Constrained Dynamical Systems
,”
ASME JOURNAL OF APPLIED MECHANICS
, Vol.
52
, pp.
943
948
.
26.
Soize
C.
,
Desanti
A.
, and
David
J. M.
,
1992
, “
Numerical Methods in Elastoacoustic for Low and Medium Frequency Ranges
,”
La Recherche Ae´rospatiale (English Edition)
, Vol.
5
, pp.
25
44
.
This content is only available via PDF.
You do not currently have access to this content.