The paper addresses the representation and simulation of random fields using wavelet bases. The probabilistic description of the wavelet coefficients involved in the representation of the random field is discussed. It is shown that a broad class of random fields is amenable to a simplified representation. Further, it is shown that a judicious use of the local and multiscale structure of Daubechies wavelets leads to an efficient simulation algorithm. The synthesis of random field samples is based on a wavelet reconstruction algorithm which can be associated with a dynamic system in the scale domain. Implementation aspects are considered and simulation errors are estimated. Examples of simulating random fields encountered in engineering applications are discussed.

1.
Basseville
M.
,
Benveniste
A.
,
Chou
K. C.
,
Goldin
S. A.
,
Nikoukhah
R.
, and
Willsky
A. S.
,
1992
a, “
Modeling and Estimation of Multiresolution Stochastic Processes
,”
IEEE Transaction on Information Theory
, Vol.
38
, No.
2
, pp.
766
784
.
2.
Basseville
M.
,
Benveniste
A.
, and
Willsky
A. S.
,
1992
b, “
Multiscale Autoregressive Processes, Part I: Schur-Levinson Parametrizations, Part II: Lattice Structure for Whitening and Modeling
,”
IEEE Transactions on Signal Processing
, Vol.
40
, No.
8
, pp.
1915
1953
.
3.
Belkin
G.
,
1993
, “
On the Representation of Operators in Bases of Compactly Supported Wavelets
,”
SIAM Journal of Numerical Analysis
, Vol.
6
, No.
6
, pp.
1716
1740
.
4.
Belkin
G.
,
Coifman
R.
, and
Rokhlin
V.
,
1991
, “
Fast Wavelet Transform and Numerical Algorithms I
,”
Communications on Pure and Applied Mathematics
, Vol.
44
, pp.
141
183
.
5.
Clippingdale, S., and Wilson, R., 1989, “Least-Square Image Estimation on a Multiresolution Pyramid,” IEEE International Conference on Acoustics, Speech and Signal Processing, Glasgow, pp. 1409–1412.
6.
Daubechies
I.
,
1988
, “
Orthogonal Basis of Compactly Supported Wavelets
,”
Communications on Pure and Applied Mathematics
, Vol.
41
, pp.
909
996
.
7.
Daubechies, I., 1992, Ten Lectures on Wavelets, Society for Industrial and Applied Mathematics, Philadelphia, PA.
8.
Dijkerman
R. W.
, and
Mazumdar
R. R.
,
1994
, “
Wavelet Representations of Stochastic Processes and Multiresolution Stochastic Models
,”
IEEE Transactions on Signal Processing
, Vol.
42
, No.
7
, pp.
1640
1652
.
9.
Fenton
G. A.
, and
Vanmarcke
E. H.
,
1990
, “
Simulation of Random Fields via Local Average Subdivision
,”
Journal of Engineering Mechanics
, Vol.
116
, No.
8
, pp.
1733
1749
.
10.
Fenton
G. A.
,
1994
, “
Error Evaluation of Three Random-Field Generators
,”
Journal of Engineering Mechanics
, Vol.
120
, No.
12
, pp.
2478
2497
.
11.
Flandrin
P.
,
1989
, “
On the Spectrum of Fractional Brownian Motions
,”
IEEE Transactions on Information Theory
, Vol.
35
, No.
1
, pp.
197
199
.
12.
Flandrin
P.
,
1992
, “
Wavelet Analysis and Synthesis of Fractional Brownian Motion
,”
IEEE Transactions on Information Theory
, Vol.
38
, No.
2
, pp.
910
917
.
13.
Fournier
A.
,
Fussel
D.
, and
Carpenter
L.
,
1982
, “
Computer Rendering of Stochastic Models
,”
Communications of the ACM
, Vol.
25
, No.
6
, pp.
371
384
.
14.
Herley
C.
, and
Vetterley
M.
,
1993
, “
Wavelets and Recursive Filter Banks
,”
IEEE Transactions on Signal Processing
, Vol.
41
, No.
8
, pp.
2536
2556
.
15.
Keshner
M. S.
,
1982
, “
1/f Noise
,”
Proceedings of IEEE
, Vol.
70
, pp.
212
218
.
16.
Lewis
J. P.
,
1987
, “
Generalized Stochastic Subdivision
,”
ACM Transactions on Graphics
, Vol.
6
, No.
3
, pp.
167
190
.
17.
Luettgen
M. R.
,
Karl
W. C.
, and
Willsky
A. S.
,
1994
, “
Efficient Multiscale Regularization with Application to the Computation of Optical Flow
,”
IEEE Transactions on Image Processing
, Vol.
3
, No.
1
, pp.
41
64
.
18.
Mignolet
M. P.
, and
Spanos
P. D.
,
1992
, “
Simulation of Homogeneous Two-Dimensional Random Fields: Part I—AR and ARMA Models
,”
ASME JOURNAL OF APPLIED MECHANICS
, Vol.
114
, pp.
260
269
.
19.
Newland, D. E., 1993, An Introduction to Random Vibrations, Spectral and Wavelet Analysis, Longman House, Harlow, U.K.
20.
Rubinstein, R. Y., 1981, Simulation and the Monte Carlo Method, John Wiley and Sons, New York.
21.
Samaras
E.
,
Shinozuka
M.
, and
Tsurui
A.
,
1983
, “
ARMA Representation of Random Processes
,”
Journal of Engineering Mechanics
, Vol.
111
, No.
3
, pp.
449
461
.
22.
Shinozuka
M.
, and
Jan
C-M.
,
1972
, “
Digital Simulation of Random Processes and Its Applications
,”
Journal of Sound and Vibration
, Vol.
25
, No.
1
, pp.
111
128
.
23.
Spanos
P. D.
, and
Mignolet
M. P.
,
1992
, “
Simulation of Homogeneous Two-Dimensional Random Fields: Part II—MA and ARMA Models
,”
ASME JOURNAL OF APPLIED MECHANICS
, Vol.
114
,
270
277
.
24.
Tewfik
A. H.
, and
Kim
,
1992
, “
Correlation Structure of the Discrete Wavelet Coefficients of Fractional Brownian Motion
,”
IEEE Transactions on Information Theory
, Vol.
38
, No.
2
, pp.
904
909
.
25.
Vanmarcke, E. H., 1983, Random Fields: Analysis and Synthesis, MIT Press, Cambridge, MA.
26.
Walter, G. G., 1994, Wavelets and Other Orthogonal Systems with Applications, Boca Raton, FL.
27.
Wornell
G. W.
,
1990
, “
A Karhunen-Loeve-Like Expansion for 1/f Processes via Wavelets
,”
IEEE Transactions on Information Theory
, Vol.
36
, No.
4
, pp.
859
861
.
28.
Wornell
G. W.
, and
Oppenheim
A. V.
,
1992
, “
Estimation of Fractal Signal from Noisy Measurements using Wavelets
,”
IEEE Transactions on Signal Processing
, Vol.
40
, No.
3
, pp.
611
623
.
29.
Zeldin, B. A., 1995, Ph.D. Dissertation, Rice University, Houston, TX.
30.
Zeldin, B. A., and Spanos, P. D., 1995, “Random Field Simulation Using Wavelet Bases,” Proceedings of the Seventh International Conference on Application of Statistics and Probability in Civil Engineering, M. Lemare, J.-L. Favre, and A. Mebarki, eds., Balkema, Rotterdam, Paris, France, July 10-13, pp. 1275–1283.
This content is only available via PDF.
You do not currently have access to this content.