This article provides a comprehensive theoretical treatment of the eigenstrain problem of a spherical inclusion with an imperfectly bonded interface. Both tangential and normal discontinuities at the interface are considered and a linear interfacial condition, which assumes that the tangential and the normal displacement jumps are proportional to the associated tractions, is adopted. The solution to the corresponding eigenstrain problem is obtained by combining Eshelby’s solution for a perfectly bonded inclusion with Volterra’s solution for an equivalent Somigliana dislocation field which models the interfacial sliding and normal separation. For isotropic materials, the Burger’s vector of the equivalent Somigliana dislocation is exactly determined; the solution is explicitly presented and its uniqueness demonstrated. It is found that the stresses inside the inclusion are not uniform, except for some special cases.

1.
Achenbach
J. D.
, and
Zhu
H.
,
1989
, “
Effect of Interfacial Zone on Mechanical Behavior and Failure of Fiber-Reinforced Composites
,”
J. Mech. Phys. Solids
, Vol.
37
, pp.
381
393
.
2.
Asaro
R. J.
,
1975
, “
Somigliana Dislocations and Internal Stresses; with Application to Second Phase Hardening
,”
Int. J. Engng. Sci.
, Vol.
13
, pp.
271
286
.
3.
Asaro
R. J.
, and
Barnett
D. M.
,
1975
, “
The Non-uniform Transformation Strain Problem for an Anisotropic Ellipsoidal Inclusion
,”
J. Mech. Phys. Solids
, Vol.
23
, pp.
77
83
.
4.
Benveniste
Y.
,
1985
, “
The Effect Mechanical Behavior of Composite Materials with Imperfect Contact between the Consitituents
,”
Mechanics of Materials
, Vol.
4
, pp.
197
208
.
5.
Eshelby
J. D.
,
1957
, “
The Determination of the Elastic Field of an Ellipsoidal Inclusion and Related Problems
,”
Proc. Roy. Soc.
, Vol.
A241
, pp.
376
396
.
6.
Furuhashi, R., Mori, T., and Mura, T., 1991, “On Stress Field inside the Spherical Sliding Inclusions,” Research Report of Meiji University, No. 4(60), pp. 39–43.
7.
Ghahremani
F.
,
1980
, “
Effect of Grain Boundary Sliding on Anelasticity of Polycrystals
,”
Int. J. Solids Struc.
, Vol.
16
, pp.
825
845
.
8.
Gosz
M.
,
Moran
B.
, and
Achenbach
J. D.
,
1991
, “
Effect of a Viscoelastic Interface on the Transverse Behavior of Fiber-reinforced Composites
,”
Int. J. Solids Struct.
, Vol.
27
, pp.
1757
1771
.
9.
Hashin
Z.
,
1990
, “
Thermoelastic Properties of Fiber Composites with Imperfect Interface
,”
Mechanics of Materials
, Vol.
8
, pp.
333
348
.
10.
Hashin
Z.
,
1991
, “
The Spherical Inclusion with Imperfect Interface
,”
ASME JOURNAL OF APPLIED MECHANICS
, Vol.
58
, pp.
444
449
.
11.
Hill, R., 1961, “Discontinuity Relations in Mechanics of Solids,” Progress in Solid Mechanics, Vol. 2, North-Holland, Amsterdam, p. 245.
12.
Huang
J. H.
,
Furuhashi
R.
, and
Mura
T.
,
1993
, “
Frictional Sliding Inclusions
,”
J. Mech. Phys. Solids
, Vol.
41
, pp.
247
265
.
13.
Jasiuk
I.
,
Tsuchida
E.
, and
Mura
T.
,
1987
, “
The Sliding Inclusion under Shear
,”
Int. J. Solids Struc.
, Vol.
23
, pp.
1373
1385
.
14.
Mura
T.
, and
Furuhashi
R.
,
1984
, “
The Elastic Inclusion With a Sliding Interface
,”
ASME JOURNAL OF APPLIED MECHANICS
, Vol.
51
, pp.
308
310
.
15.
Mura
T.
,
Jasiuk
I.
, and
Tsuchida
B.
,
1985
, “
The Stress Field of a Sliding Inclusion
,”
Int. J. Solids Stnte.
, Vol.
21
, pp.
1165
1179
.
16.
Mura, T., 1987, Micromechanics of Defects in Solids’, 2nd rev. ed., Martinus Nijhoff.
17.
Mura
T.
,
1988
, “
Inclusion Problems
,”
ASME Appl. Mech. Rev.
, Vol.
41
, No.
1
, pp.
15
19
.
18.
Nemat-Nasser, S., and Hori, M., 1993, Micromechanics: Overall Properties of Heterogeneous Materials, North-Holland, Amsterdam.
19.
Qu
J.
,
1993
, “
The Effect of Slightly Weakened Interfaces on the Overall Elastic Properties of Composite Materials
,”
Mechanics of Materials
, Vol.
14
, pp.
269
281
.
20.
Walpole
L. J.
,
1967
, “
The Elastic Field of an Inclusion in an Anisotropic Medium
,”
Proc. Roy. Soc.
, Vol.
A300
, pp.
235
251
.
21.
Walpole
L. J.
,
1978
, “
A Coated Inclusion in an Elastic Medium
,”
Math. Proc. Camb. Phil. Soc.
, Vol.
83
, pp.
495
506
.
22.
Willis
J. R.
,
1964
, “
Anisotropic Elastic Inclusion Problems
,”
Q. J. Mech. Appl. Math.
, Vol.
17
, pp.
157
174
.
23.
Willis
J. R.
,
1965
, “
Dislocations and Inclnsions
,”
J. Mech. Phys. Solids
, Vol.
13
, pp.
377
395
.
You do not currently have access to this content.