A least-squares-based pressure projection method is proposed for the nonlinear analysis of nearly incompressible hyperelastic materials. The strain energy density function is separated into distortional and dilatational parts by the use of Penn’s invariants such that the hydrostatic pressure is solely determined from the dilatational strain energy density. The hydrostatic pressure and hydrostatic pressure increment calculated from displacements are projected onto appropriate pressure fields through the least-squares method. The method is applicable to lower and higher order elements and the projection procedures can be implemented into the displacement based nonlinear finite element program. By the use of certain pressure interpolation functions and reduced integration rules in the pressure projection equations, this method can be degenerated to a nonlinear version of the selective reduced integration method.

1.
Babuska
I.
,
1973
, “
The Finite Element Method with Lagrangian Multipliers
,”
Numerical Mathematics
, Vol.
20
, pp.
179
192
.
2.
Bachrach
W. E.
and
Belytschko
T.
,
1986
, “
Axisymmetric Elements With High Coarse-Mesh Accuracy
,”
Computers & Structures
, Vol.
23
, pp.
323
331
.
3.
Belytschko
T.
, and
Bachrach
W. E.
,
1986
, “
Efficient Implementation of Quadrilaterals with High Coarse-Mesh Accuracy
,”
Computer Methods in Applied Mechanics and Engineering
, Vol.
54
, pp.
279
301
.
4.
Belytschko
T.
,
Ong
J. S.-J.
,
Liu
W. K.
, and
Kennedy
J. M.
,
1984
, “
Hourglass Control in Linear and Nonlinear Problems
,”
Computer Methods in Applied Mechanics and Engineering
, Vol.
43
, pp.
251
276
.
5.
Bercovier
M.
,
1978
, “
Perturbation of Mixed Variational Problems, Application to Mixed Finite Element Methods
,”
R.A.I.R.O. Numerical Analysis
, Vol.
12
, pp.
211
236
.
6.
Brezzi
F.
,
1974
, “
On the Existence, Uniqueness and Approximation of Saddle-Point Problems Arising from Lagrangian Multipliers
,”
R.A.I.R.O. Numerical Analysis
, Vol.
8
, pp.
129
151
.
7.
Cescotto
S.
, and
Fonder
G.
,
1979
, “
A Finite Element Approach for Large Strains of Nearly Incompressible Rubber-like Materials
,”
International Journal of Solids and Structures
, Vol.
15
, pp.
589
605
.
8.
Chang
T. Y. P.
,
Saleeb
A. F.
, and
Li
G.
,
1991
, “
Large Strain Analysis of Rubber-like Materials Based on a Perturbed Lagrangian Variational Principle
,”
Computational Mechanics
, Vol.
8
, pp.
221
233
.
9.
Chen
J. S.
,
Satyamurthy
K. S.
, and
Hirschfelt
L. R.
,
1994
, “
Consistent Finite Element Procedures for Nonlinear Rubber Elasticity with a Higher Order Strain Energy Function
,”
Computers & Structures
, Vol.
50
, pp.
715
727
.
10.
Fried
I.
,
1974
, “
Finite Element Analysis of Incompressible Material by Residual Energy Balance
,”
International Journal of Solids and Structures
, Vol.
10
, pp.
993
1002
.
11.
Herrmann
L. R.
,
1965
, “
Elasticity Equations for Incompressible and Nearly Incompressible Materials by a Variational Theorem
,”
AIAA Journal
, Vol.
3
, pp.
1896
1900
.
12.
Hughes
T. J. R.
,
1980
, “
Generalization of Selective Integration Procedures to Anisotropic and Nonlinear Media
,”
International Journal for Numerical Methods in Engineering
, Vol.
15
, pp.
1413
1418
.
13.
Hughes
T. J. R.
,
Liu
W. K.
, and
Brooks
A.
,
1979
, “
Review of Finite Element Analysis of Incompressible Viscous Flows by the Penalty Function Formulation
,”
Journal of Computational Physics
, Vol.
30
, pp.
1
60
.
14.
Key
S. W.
,
1969
, “
A Variational Principle for Incompressible and Nearly Incompressible Anisotropic Elasticity
,”
International Journal of Solids and Structures
, Vol.
5
, pp.
951
964
.
15.
Liu
W. K.
,
Belytschko
T.
, and
Chen
J. S.
,
1988
, “
Nonlinear Versions of Flexurally Superconvergent Elements
,”
Computer Methods in Applied Mechanics and Engineering
, Vol.
71
, pp.
241
256
.
16.
Liu
W. K.
,
Ong
J. S.-J.
, and
Uras
R. A.
,
1986
, “
Finite Element Stabilization Matrices-A Unification Approach
,”
Computer Methods in Applied Mechanics and Engineering
, Vol.
53
, pp.
13
46
.
17.
Malkus
D. S.
,
1980
, “
Finite Elements With Penalties in Nonlinear Elasticity
,”
International Journal for Numerical Methods in Engineering
, Vol.
16
, pp.
121
136
.
18.
Malkus
D. S.
, and
Hughes
T. J. R.
,
1978
, “
Mixed Finite Element Methods-Reduced and Selective Integration Techniques: A Unification of Concepts
,”
Computer Methods in Applied Mechanics and Engineering
, Vol.
15
, pp.
63
81
.
19.
Mooney
M.
,
1940
, “
A Theory of Large Elastic Deformation
,”
Journal of Applied Physics
, Vol.
11
, pp.
582
592
.
20.
Murakawa
H.
, and
Atluri
S. N.
,
1979
, “
Finite Elasticity Solutions Using Hybrid Finite Elements Based on a Complementary Energy Principle, Part 2. Incompressible Materials
,”
ASME JOURNAL OF APPLIED MECHANICS
, Vol.
46
, pp.
71
77
.
21.
Oden
T. J.
, and
Kikuchi
N.
,
1982
, “
Finite Element Methods for Constrained Problems in Elasticity
,”
International Journal for Numerical Methods in Engineering
, Vol.
18
, pp.
701
725
.
22.
Penn
R. W.
,
1970
, “
Volume Changes Accompanying the Extension of Rubber
,”
Transactions of the Society of Rheology
, Vol.
14:4
, pp.
509
517
.
23.
Rivlin, R. S., 1956, Rheology Theory and Applications, F. R. Eirich, ed., Academic Press, New York, Vol. 1, Chapter 10, pp. 351–385.
24.
Scharuhorst
T.
, and
Pian
T. H. H.
,
1978
, “
Finite Element Analysis of Rubber-like Materials by a Mixed Model
,”
International Journal for Numerical Methods in Engineering
, Vol.
12
, pp.
665
676
.
25.
Simo
J. C.
,
Taylor
R. L.
, and
Pister
K. S.
,
1985
, “
Variational and Projection Methods for Volume Constraint in Finite Deformation Elasto-Plasticity
,”
Computer Methods in Applied Mechanics and Engineering
, Vol.
51
, pp.
177
208
.
26.
Sussman
T. S.
, and
Bathe
K. J.
,
1987
, “
A Finite Element Formulation for Incompressible Elastic and Inelastic Analysis
,”
Computers & Structures
, Vol.
26
, pp.
357
409
.
27.
Taylor
R. L.
,
Pister
K. S.
, and
Herrmann
L. R.
,
1968
, “
On a Variational Theorem for Incompressible and Nearly Incompressible Orthotropic Elasticity
,”
International Journal of Solids and Structures
, Vol.
4
, pp.
875
883
.
28.
Tong
P.
,
1969
, “
An Assumed Stress Hybrid Finite Element Method for an Incompressible and Nearly-incompressible Material
,”
International Journal of Solids and Structures
, Vol.
5
, pp.
455
461
.
29.
Wood, L. A. and Martin, G. M., 1964, Journal of Research of the National Bureau of Standards, p. 259.
30.
Yeoh
O. H.
,
1990
, “
Characterization of Elastic Properties of Carbon Black Filled Rubber Vulcanizates
,”
Rubber Chemistry and Technology
, Vol.
63
, pp.
792
805
.
31.
Yeoh
O. H.
,
1993
, “
Some Forms of the Strain Energy Function for Rubber
,”
Rubber Chemistry and Technology
, Vol.
66
, pp.
754
771
.
This content is only available via PDF.
You do not currently have access to this content.