The elastodynamic response of a thick plate, with the axis of transverse isotropy normal to the plate surface, is calculated by double numerical inverse transforms, a method particularly well-suited for calculations of responses in the near field of layered structures. Applications of these calculations include point-source/point-receiver ultrasonics, quantitative acoustic emission measurements, and seismology. The singularities of the integrand are eliminated by the introduction of a small, but nonzero, imaginary part to the frequency. We discuss issues of numerical efficiency and accuracy in the evaluation of the resulting integrals. The method can be generalized to calculate the responses in materials of more general symmetry, in viscoelastic materials and to include the effects of finite aperture sources and receivers. The calculated responses are compared to those measured in a single crystal specimen of zinc.

1.
Bedding
R. J.
, and
Willis
J. R.
,
1980
, “
The elastodynamics Green’s tensor for a half space with an embedding anisotropic layer
,”
Wave Motion
, Vol.
2
, No.
1
, pp.
51
62
.
2.
Ben-Menahem
A.
, and
Sena
A. G.
,
1990
, “
The elastodynamic Green’s tensor in an anisotropic half-space
,”
Geophys. J. Int.
, Vol.
102
, pp.
421
443
.
3.
Bouchon
M.
, and
Aki
K.
,
1977
, “
Discrete wavenumber representation of seismic-source wave fields
,”
Bull. Seism. Soc. of Am.
, Vol.
67
, pp.
259
277
.
4.
Buchwald
V. T.
,
1959
, “
Elastic waves in anisotropic media
,”
Proc. R. Soc. London
, Vol.
A253
, pp.
563
580
.
5.
Castagnede
B.
,
Kim
K. Y.
,
Sachse
W.
, and
Thompson
M. O.
,
1991
, “
Determination of the elastic constants of anisotropic materials using laser-generated ultrasonic signals
,”
J. Appl. Phys.
, Vol.
70
, No.
1
, pp.
150
157
.
6.
Ceranoglu
A. N.
, and
Pao
Y. H.
,
1981
, “
Propagation of Elastic Pulses and Acoustic Emission in a Plate
,”
ASME JOURNAL OF APPLIED MECHANICS
, Vol.
48
, pp.
125
147
.
7.
Chang
C.
, and
Sun
C. T.
,
1988
, “
Acoustic emissions and transient elastic waves in an orthotropic laminate plate
,”
Composite Sci. Tech.
, Vol.
33
, pp.
213
236
.
8.
Duprey, K., 1993, “Attenuation Recovery in Viscoelastic Plates including the Effects of Finite Aperture Transducers,” M.S. Dissertation, Cornell University, Ithaca, NY.
9.
Every
A. G.
, and
Sachse
W.
,
1990
, “
Determination of the elastic constants of anisotropic solids from acoustic wave group velocity measurements
,”
Physical Review B
, Vol.
42
, No.
13
, pp.
8196
8205
.
10.
Every
A. G.
, and
Sachse
W.
,
1991
, “
Imaging of laser-generated ultrasonic waves in silicon
,”
Physical Review B
, Vol.
44
, No.
13
, pp.
6689
6699
.
11.
Every, A. G., Sachse, W., Kim, K. Y., and Niu, L., 1991, “Determination of elastic constants of anisotropic solids from group velocity data,” Review of Progress in Quantitative Nondestructive Evaluation, Vol. 10B, D. O. Thompson and D. E. Chimenti, eds., Plenum Press, New York, pp. 1663–1668.
12.
Every
A. G.
, and
Kim
K. Y.
,
1994
, “
Time domain dynamic response functions of elastically anisotropic solids
,”
J. Acoust. Soc. Am.
, Vol.
95
, No.
5
, pp.
2505
2516
.
13.
Hsu, N. N., 1985, “Dynamic Green’s Functions of an Infinite Plate—A Computer Program,” NBSIR 85-3234, National Bureau of Standards, Gaithersburg, MD.
14.
Kim
K. Y.
, and
Sachse
W.
,
1994
, “
Direct determination of group velocity surfaces in a cuspidal region in zinc
,”
J. Appl. Phys.
, Vol.
75
, No.
3
, pp.
1435
1441
.
15.
Kim, K. Y., Sachse, W., and Hsieh, P., 1989, “Quantitative study of fracture by acoustic emission from cracks,” Advances in Fracture Research, Vol. 5, K. Salama, K. Ravichandar, D. M. R. Taplin, and P. R. Rao, eds, Pergamon Press, New York, pp. 3185-3196.
16.
Kim
K. Y.
,
Sachse
W.
, and
Every
A. G.
,
1993
a, “
On the determination of sound speeds in cubic crystals and isotropic media using a broadband ultrasonic point-source/point-receiver method
,”
J. Acoust. Soc. Am.
, Vol.
93
, No.
3
, pp.
1393
1406
.
17.
Kim
K. Y.
,
Every
A. G.
, and
Sachse
W.
,
1993
b, “
Focusing of acoustic energy at the conical point in zinc
,”
Phys. Rev. Letters
, Vol.
70
, pp.
3443
3446
.
18.
Kim
K. Y.
,
Every
A. G.
, and
Sachse
W.
,
1994
, “
Focusing of Quasi-Transverse Modes in Zinc at Ultrasonic Frequencies
,”
Int. J. Mod. Phys. B
, Vol.
8
, No.
17
, pp.
2327
2352
.
19.
Knopoff
L.
,
1958
, “
Surface Motions of a Thick Plate
,”
J. Appl. Phys.
, Vol.
24
, pp.
661
670
.
20.
Kundu
T.
, and
Mal
A. K.
,
1985
, “
Elastic waves in a multilayered solid due to a dislocation source
,”
Wave Motion
, Vol.
7
, pp.
459
471
.
21.
Lih
S. S.
, and
Mal
A. K.
,
1992
, “
Elastodynamic response of unidirectional composite laminates to concentrated loads
,”
ASME JOURNAL OF APPLIED MECHANICS
, Vol.
59
, pp.
878
886
.
22.
Lu
I. T.
, and
Felsen
L. B.
,
1985
, “
Ray, mode, and hybrid options for source excited propagation in an elastic plate
,”
J. Acoust. Soc. Am.
, Vol.
78
, No.
2
, pp.
701
714
.
23.
Musgrave, M. J. P., 1970, Crystal Acoustics, Holden-Day, San Francisco. Chapters 7 and 8.
24.
Nayfeh
A.
, and
Chimenti
D.
,
1989
, “
Free wave propagation in plates of general anisotropic media
,”
ASME JOURNAL OF APPLIED MECHANICS
, Vol.
56
, pp.
881
888
.
25.
Nayfeh, A., and Kim, Y.-Y., 1993, “Wave propagation in anisotropic media due to internal transient line loads,” paper read at the ASME-AMD Summer Meeting, Charlottesville, VA, June, 1993; in Meet’N’93, Abstracts, p. 504.
26.
Niu, L., 1992, “The Determination of the Elastic Constants of Composite Materials from Ultrasonic Group Velocity Data,” Ph.D. Dissertation, Cornell University, Ithaca, NY.
27.
Pao, Y. H., and Gajewski, R., 1977, “The Generalized Ray Theory and Transient Responses of Layered Elastic Solids,” Physical Acoustics, Vol. XIII, W. P. Mason and R. N. Thurston, eds., Academic Press, New York, pp. 183–265.
28.
Payton, R. G., 1983, Elastic Wave Propagation in Transversely Isotropic Media, Martinus Nijhoff, Hague.
29.
Pekeris
C. L.
,
1955
, “
The seismic surface pulse
,”
Proc. Natl. Acad. Sci.
, Vol.
41
, pp.
469
480
.
30.
Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T., 1986, Numerical Recipes, Cambridge University Press, Cambridge, UK.
31.
Sachse, W., and Kim, K. Y., 1986, “Point-source/point-receiver materials testing,” Review of Quantitative Nondestructive Evaluation, Vol. 6A, D. O. Thompson and D. E. Chimenti, eds., Plenum Press, New York, pp. 311–320; also: 1987a, Ultrasonic Materials Characterization II, J. Boussie`re, J. P. Monchalin, C. O. Ruud, and R. E. Green, eds., Plenum Press, New York, pp. 707-715.
32.
Sachse
W.
, and
Kim
K. Y.
,
1987
b, “
Quantitative acoustic emission and failure mechanics of composite materials
,”
Ultrasonics
, Vol.
25
, pp.
195
203
.
33.
Sachse
W.
,
Castagnede
B.
,
Grabec
I.
,
Kim
K. Y.
, and
Weaver
R. L.
,
1990
a, “
Recent developments in quantitative ultrasonic NDE of composites
,”
Ultrasonics
, Vol.
28
, pp.
97
104
.
34.
Sachse, W., Every, A. G., and Weaver, R. L., 1991, “Interpretation of ultrasonic PS/PR amplitude data,” Review of Progress in Quantitative Nondestructive Evaluation, Vol. 10A, D. O. Thompson and D. E. Chimenti, eds., Plenum Press, New York, pp. 129–136.
35.
Santosa
F.
, and
Pao
Y. H.
,
1989
, “
Transient axially asymmetric response of an elastic plate
,”
Wave Motion
, Vol.
11
, pp.
271
295
.
36.
Scruby, C. B., 1985, “Quantitative acoustic emission techniques,” Research Techniques in Nondestructive Testing, Vol. VIII, R. S. Sharpe, ed., Academic Press, London, pp. 141-210.
37.
Synge
J. L.
,
1957
, “
Elastic waves in anisotropic media
,”
J. Math. Phys
., Vol.
35
, pp.
323
334
.
38.
Van der Hijden, J. H. M. T., 1987, Propagation of Transient Elastic Waves in Stratified Anisotropic Media, Applied Mathematics and Mechanics, Vol. 32, North-Holland, Amsterdam.
39.
Vasudevan
N.
, and
Mal
A. K.
, 1985, “
Response of an elastic plate to localized transient sources
,”
ASME JOURNAL OF APPLIED MECHANICS
, Vol.
52
, pp.
356
362
.
40.
Weaver
R. L.
, and
Pao
Y. H.
,
1982
a, “
Axisymmetric waves excited by a point source in a plate
,”
ASME JOURNAL OF APPLIED MECHANICS
, Vol.
49
, pp.
821
836
.
41.
Weaver
R. L.
, and
Pao
Y. H.
,
1982
b, “
Spectra of transient elastic waves in elastic plates
,”
J. Acoust. Soc. Am.
, Vol.
72
, pp.
1933
1941
.
42.
Weaver
R. L.
, and
Sachse
W.
,
1994
, “
Asymptotic viscoelastic rays in a thick plate
,”
ASME JOURNAL OF APPLIED MECHANICS
, Vol.
61
, pp.
429
432
.
43.
Weaver
R. L.
,
Sachse
W.
, and
Niu
L.
,
1989
, “
Transient ultrasonic waves in a viscoelastic plate, Part I: Theory; Part II: Applications to materials characterization
,”
J. Acoust. Soc. Am.
, Vol.
85
, No.
6
, pp.
2255
2261
.
44.
Wu, T. T., and Kuo, C.-L., 1990, “A study of acoustic emission waves in double layer composite plates,” Progress in Acoustic Emission V, Japanese Society for NDI, Tokyo, pp. 217–221.
45.
Xu
P. C.
, and
Mal
A. K.
,
1985
, “
An adaptive integration scheme for irregularly oscillating functions
,”
Wave Motion
, Vol.
7
, pp.
235
243
.
This content is only available via PDF.
You do not currently have access to this content.