The dissipatively perturbed Hamiltonian system corresponding to primary resonance is analyzed in the case in which two competing stable periodic responses exist. The method of averaging fails as the trajectory approaches the unperturbed homoclinic orbit (separatrix). By using the small dissipation of the Hamiltonian (the Melnikov integral) near the homoclinic orbit, the boundaries of the basin of attraction are determined analytically in an asymptotically accurate way. The selection of the two competing periodic responses is influenced by small changes in the initial conditions. The analytic formula is shown to agree well with numerical computations.

1.
Arnold, V. I., Kozlov, V. V., and Neishtadt, A. I., 1988, Mathematical Aspects of Classical and Celestial Mechanics, Dynamical Systems III, Springer-Verlag, New York.
2.
Bourland
F. J.
, and
Haberman
R.
,
1990
, “
Separatix Crossing: Time-Invariant Potentials With Dissipation
,”
SIAM Journal on Applied Mathematics
, Vol.
50
, pp.
1716
1744
.
3.
Bourland, F. J., and Haberman, R., 1991a, “Capture and the Connection Formulas for the Transition Across a Separatrix,” Asymptotic Analysis and the Numerical Solution of Partial Differential Equations, H. G. Kaper and M. Garbey, eds., Dekker, New York, pp. 17–30.
4.
Bourland
F. J.
,
Haberman
R.
, and
Kath
W. L.
,
1991
b, “
Averaging Methods for the Phase Shift of Arbitrarily Perturbed Strongly Nonlinear Oscillators With an Application to Capture
,”
SIAM Journal on Applied Mathematics
, Vol.
51
, pp.
1150
1167
.
5.
Drazin, P. G., 1992, Nonlinear Systems, Cambridge, New York.
6.
Guckenheimer, J., and Holmes, P., 1983, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer-Verlag, New York.
7.
Jordan, D. W., and Smith, P., 1987, Nonlinear Ordinary Differential Equations, 2nd ed., Oxford, New York.
8.
Kevorkian
J.
,
1987
, “
Perturbation Techniques for Oscillatory Systems With Slowly Varying Coefficients
,”
SIAM Review
, Vol.
29
, pp.
391
461
.
9.
Kevorkian, J., and Cole, J. D., 1981, Perturbation Methods in Applied Mathematics, Springer-Verlag, New York.
10.
Nayfeh, A. H., and Mook, D. T., 1979, Nonlinear Oscillations, John Wiley and Sons, New York.
11.
Neishtadt
A. I.
,
1975
, “
Passage Through a Separatrix in a Resonance Problem With a Slowly-Varying Parameter
,”
Journal of Applied Mathematics and Mechanics
, Vol.
39
, pp.
594
605
.
12.
Neishtadt
A. I.
,
1986
, “
Change of an Adiabatic Invariant at a Separatrix
,”
Soviet Journal of Plasma Physics
, Vol.
12
, pp.
568
573
.
13.
Neishtadt
A. I.
,
1991
, “
Probability Phenomena Due to Separatrix Crossing
,”
Chaos
, Vol.
1
, pp.
42
48
.
14.
Sanders, J. A., and Verhulst, F., 1985, Averaging Methods in Nonlinear Dynamical Systems, Springer-Verlag, New York.
15.
Tennyson
J. L.
,
Cary
J. R.
, and
Escande
D. F.
,
1986
, “
Change of the Adiabatic Invariant Due to Separatrix Crossing
,”
Physical Review Letters
, Vol.
56
, pp.
2117
2120
.
1.
Timofeev
A. V.
,
1978
, “
On the Constancy of an Adiabatic Invariant When the Nature of the Motion Changes
,”
Zh. Eksp. Teor. Fiz.
,
75
, pp.
1303
1308
, (In Russian),
2.
Soviet Physics JETP
, Vol.
48
, pp.
656
659
.
1.
Wiggins, S., 1990, Introduction to Applied Nonlinear Dynamical Systems and Chaos, Springer-Verlag, New York.
This content is only available via PDF.
You do not currently have access to this content.