Issue Section:
Brief Notes
1.
Berryman
J. G.
1983
, “Random close packing of hard spheres and disks
,” Physical Review A
, Vol. 27
, No. 2
, pp. 1053
–1061
.2.
Cressie, N., 1991, Statistics for Spatial Data, Wiley-Interscience, New York, (a) pp. 631–650, 669–673, (b) 689–693.
3.
Finegold
H. L.
Donnell
J. T.
1979
, “Maximum density of random placing of membrane particles
,” Nature
, Vol. 278
, pp. 443
–445
.4.
Hashin
Z.
1983
, “Analysis of Composite Materials—A Survey
,” ASME JOURNAL OF APPLIED MECHANICS
, Vol. 50
, No. 3
, pp. 481
–505
.5.
Lotwick
H. W.
1982
, “Simulation of Some Spatial Hard Core Models, and the Complete Packing Problem
,” Journal of Statistical Computing and Simulation
, Vol. 15
, pp. 295
–314
.6.
Ostoja-Starzewski
M.
1993
, “Micromechanics as a basis of stochastic finite elements and differences: An overview
,” Applied Mechanics Review
, Vol. 46
, No. 11
, Part 2, pp. S136–S147
S136–S147
.7.
Quickenden
T. E.
Tan
G. K.
1974
, “Random Packing in Two Dimensions and the Structure of Monolayers
,” Journal of Colloid and Interface Science
, Vol. 48
, No. 3
, pp. 382
–393
.8.
Shahinpoor
M.
1980
, “Statistical Mechanical Considerations of the Random Packing of Granular Materials
,” Powder Technology
, Vol. 25
, pp. 163
–176
.9.
Stoyan, D., Kendall, W. S., and Mecke, J., 1987, “Stochastic Geometry and Its Applications,” John Wiley, Chichester, pp. 117–148.
10.
Smith
P.
Torquato
S.
1988
, “Computer Simulation Results for the Two-Point Probability Function for Composite Media
,” Journal of Computational Physics
, Vol. 76
, pp. 176
–191
.11.
Stillinger
F. H.
DiMarzio
E. A.
Komegay
R. L.
1964
, “Systematic approach to explanation of the rigid disk phase transition
,” Journal of Chemical Physics
, Vol. 40
, pp. 1564
–1576
.
This content is only available via PDF.
Copyright © 1995
by The American Society of Mechanical Engineers
You do not currently have access to this content.