The coefficients of a linear nonconservative system are arbitrary matrices lacking the usual properties of symmetry and definiteness. Classical modal analysis is extended in this paper so as to apply to systems with nonsymmetric coefficients. The extension utilizes equivalence transformations and does not require conversion of the equations of motion to first-order forms. Compared with the state-space approach, the generalized modal analysis can offer substantial reduction in computational effort and ample physical insight.

1.
Caughey
T. K.
, and
Ma
F.
,
1993
, “
Complex Modes and Solvability of Non-classical Linear Systems
,”
ASME JOURNAL OF APPLIED MECHANICS
, Vol.
60
, pp.
26
28
.
2.
Caughey
T. K.
, and
O’Kelly
M. E. J.
,
1965
, “
Classical Normal Modes in Damped Linear Dynamic Systems
,”
ASME JOURNAL OF APPLIED MECHANICS
, Vol.
32
, pp.
583
588
.
3.
Fawzy
I.
, and
Bishop
R. E. D.
,
1976
, “
On the Dynamics of Linear Nonconservative Systems
,”
Proceedings of the Royal Society of London
, Vol.
A352
, pp.
25
40
.
4.
Golub, G. H., and Van Loan, C. F., 1989, Matrix Computations, 2nd ed., Johns Hopkins University Press, Baltimore, p. 394.
5.
Horn, R. A., and Johnson, C. R., 1985, Matrix Analysis, Cambridge University Press, Cambridge, U.K., pp. 50, 171.
6.
Huseyin, K., 1978, Vibrations and Stability of Multiple Parameter Systems, Noordhoff, Alphen aan den Rijn, The Netherlands, pp. 91, 106, 171.
7.
Huseyin
K.
, and
Leipholz
H. H. E.
,
1973
, “
Divergence Instability of Multiple-Parameter Circulatory Systems
,”
Quarterly of Applied Mathematics
, Vol.
31
, pp.
185
197
.
8.
Hwang
J. H.
, and
Ma
F.
,
1993
, “
On the Approximate Solution of Nonclassically Damped Linear Systems
,”
ASME JOURNAL OF APPLIED MECHANICS
, Vol.
60
, pp.
695
701
.
9.
Inman
D. J.
,
1983
, “
Dynamics of Asymmetric Nonconservative Systems
,”
ASME JOURNAL OF APPLIED MECHANICS
, Vol.
50
, pp.
199
203
.
10.
Meirovitch, L., 1967, Analytical Methods in Vibrations, MacMillan, New York, pp. 89, 239.
11.
Mu¨ller, P. C., and Schiehlen, W. O., 1985, Linear Vibrations, Martinus Nijhoff, Dordrecht, The Netherlands, p. 37.
12.
Park
I. W.
,
Kim
J. S.
, and
Ma
F.
,
1994
, “
Characteristics of Modal Coupling in Nonclassically Damped Systems under Harmonic Excitation
,”
ASME JOURNAL OF APPLIED MECHANICS
, Vol.
61
, pp.
77
83
.
13.
Schmitz
P. D.
,
1973
, “
Normal Mode Solution to the Equations of Motion of a Flexible Airplane
,”
Journal of Aircraft
, Vol.
10
, pp.
318
320
.
14.
Soom
A.
, and
Kim
C.
,
1983
, “
Roughness-Induced Dynamic Loading at Dry and Boundary-Lubricated Sliding Contacts
,”
ASME Journal of Lubrication Technology
, Vol.
105
, pp.
514
517
.
15.
Soong, T. T., 1990, Active Structural Control: Theory and Practice, Longman, Essex, U.K., p. 8.
16.
Udwadia
F. E.
, and
Esfandiari
R. S.
,
1990
, “
Nonclassically Damped Dynamic Systems: An Iterative Approach
,”
ASME JOURNAL OF APPLIED MECHANICS
, Vol.
57
, pp.
423
433
.
17.
Zurmu¨hl, R., and Falk, S., 1984, Matrizen und ihre Anwendungen, Vol. 1, 5th ed., Springer-Verlag, Berlin, p. 180.
This content is only available via PDF.
You do not currently have access to this content.